2,309 research outputs found

    Permeation of Several Gases through Elastomers, with Emphasis on the Deuterium/hydrogen Pair

    Get PDF
    The Diffusion and Permeation Coefficients for He, H2, D2, O2, and N2 in a Variety of Elastomers Were Measured by Simple Manometric Methods. the Elastomers Studied Were Butyl Rubber; HypalonÂź 40 and 45; VitonÂź E60 and GF; HydrinÂź 100 and Filled HydrinÂź 100; KratonÂź G, FG, and KG VTEOS; EPDM; Epoxidized Natural Rubber; and Neoprene. Consistent with Earlier Studies, Elastomers with Higher Glass Transition Temperatures Exhibited Lower Diffusion Coefficients. the Ratio of Diffusion Coefficients of the Hydrogen Isotope Pair Differed from the Purely Molecular‐weight‐based Prediction. Deuterium\u27s Slightly Smaller Size Relative to Hydrogen is Consistent with Observed Deviations from the Molecular‐weight‐based Diffusion Coefficient Ratio. © 1993 John Wiley & Sons, Inc. Copyright © 1993 John Wiley & Sons, Inc

    Monoclonal antibodies to estrophilin: probes for the study of estrogen receptors.

    Full text link

    Cross modal perception of body size in domestic dogs (Canis familiaris)

    Get PDF
    While the perception of size-related acoustic variation in animal vocalisations is well documented, little attention has been given to how this information might be integrated with corresponding visual information. Using a cross-modal design, we tested the ability of domestic dogs to match growls resynthesised to be typical of either a large or a small dog to size- matched models. Subjects looked at the size-matched model significantly more often and for a significantly longer duration than at the incorrect model, showing that they have the ability to relate information about body size from the acoustic domain to the appropriate visual category. Our study suggests that the perceptual and cognitive mechanisms at the basis of size assessment in mammals have a multisensory nature, and calls for further investigations of the multimodal processing of size information across animal species

    Exploring Molecular Simulations of a Plausible Prebiotic Reduced Phospholipid Using Hyperchem Software

    Get PDF
    How the first cells emerged from the primordial milieu is one of the great questions in science. Biomolecular emergence scenarios abound in the literature, but the lack of bioaccessible phosphate and molecular oxygen on the primordial Earth has posed formidable challenges for deducing emergence pathways. One idea gaining wide acceptance invokes delivery of the phosphide mineral schreibersite ((Fe,Ni)3P) to Earth via meteorite impacts ca. 4.2 billion years ago, whereupon they were corroded to reduced phosphorous oxyacids and phosphonates in primordial aquatic environments. We previously proposed that these reduced phosphorus forms could readily combine with putative geochemical species in shallow mineral-rich alkaline hydrothermal systems to form reduced phospholipid analogs of contemporary phosphate-based phospholipids (Fitch, N.W., K.L. Even, L.J. Leinen and M.O. Gaylor. 2016. Plausible prebiotic assembly of a primitive reduced phospholipid from meteoritic phosphorus on the primordial earth. Proceedings of the South Dakota Academy of. Science 95:176.). Lacking resources to empirically validate this idea, we explored “water box” simulations of the proposed phospholipid structure using the HyperChem software package. Simulation results showed the hydrophobic tails migrating away from water molecules, while hydrophilic heads migrated towards them, resulting in quasistacking behaviors consistent with those of known amphiphiles in water. Inspired by these results, we are now investigating more complex primordial simulation scenarios

    Uneconomical Diagnosis of Cladograms: Comments on Wheeler and Nixon's Method for Sankoff Optimization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74972/1/j.1096-0031.1997.tb00249.x.pd

    Acoustic allometry revisited: morphological determinants of fundamental frequency in primate vocal production

    Get PDF
    A fundamental issue in the evolution of communication is the degree to which signals convey accurate (“honest”) information about the signaler. In bioacoustics, the assumption that fundamental frequency (fo) should correlate with the body size of the caller is widespread, but this belief has been challenged by various studies, possibly because larynx size and body size can vary independently. In the present comparative study, we conducted excised larynx experiments to investigate this hypothesis rigorously and explore the determinants of fo. Using specimens from eleven primate species, we carried out an inter-specific investigation, examining correlations between the minimum fo produced by the sound source, body size and vocal fold length (VFL). We found that, across species, VFL predicted minimum fo much better than body size, clearly demonstrating the potential for decoupling between larynx size and body size in primates. These findings shed new light on the diversity of primate vocalizations and vocal morphology, highlighting the importance of vocal physiology in understanding the evolution of mammal vocal communication

    Similarity-Detection and Localization

    Full text link
    The detection of similarities between long DNA and protein sequences is studied using concepts of statistical physics. It is shown that mutual similarities can be detected by sequence alignment methods only if their amount exceeds a threshold value. The onset of detection is a continuous phase transition which can be viewed as a localization-delocalization transition. The ``fidelity'' of the alignment is the order parameter of that transition; it leads to criteria for the selection of optimal alignment parameters.Comment: 4 pages including 4 figures (308kb post-script file
    • 

    corecore