101 research outputs found

    Errors in chromosome segregation during oogenesis and early embryogenesis

    Get PDF
    Errors in chromosome segregation occurring during human oogenesis and early embryogenesis are very common. Meiotic chromosome development during oogenesis is subdivided into three distinct phases. The crucial events, including meiotic chromosome pairing and recombination, take place from around 11 weeks until birth. Oogenesis is then arrested until ovulation, when the first meiotic division takes place, with the second meiotic division not completed until after fertilization. It is generally accepted that most aneuploid fetal conditions, such as trisomy 21 Down syndrome, are due to maternal chromosome segregation errors. The underlying reasons are not yet fully understood. It is also clear that superimposed on the maternal meiotic chromosome segregation errors, there are a large number of mitotic errors taking place post-zygotically during the first few cell divisions in the embryo. In this chapter, we summarise current knowledge of errors in chromosome segregation during oogenesis and early embryogenesis, with special reference to the clinical implications for successful assisted reproduction

    SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts

    Get PDF
    Although selection of chromosomally normal embryos has the potential to improve outcomes for patients undergoing IVF, the clinical impact of aneuploidy screening by fluorescence in situ hybridization (FISH) has been controversial. There are many putative explanations including sampling error due to mosaicism, negative impact of biopsy, a lack of comprehensive chromosome screening, the possibility of embryo self-correction and poor predictive value of the technology itself. Direct analysis of the negative predictive value of FISH-based aneuploidy screening for an embryo's reproductive potential has not been performed. Although previous studies have found that cleavage-stage FISH is poorly predictive of aneuploidy in morphologically normal blastocysts, putative explanations have not been investigated. The present study used a single nucleotide polymorphism (SNP) microarray-based 24 chromosome aneuploidy screening technology to re-evaluate morphologically normal blastocysts that were diagnosed as aneuploid by FISH at the cleavage stage. Mosaicism and preferential segregation of aneuploidy to the trophectoderm (TE) were evaluated by characterization of multiple sections of the blastocyst. SNP microarray technology also provided the first opportunity to evaluate self-correction mechanisms involving extrusion or duplication of aneuploid chromosomes resulting in uniparental disomy (UPD). Of all blastocysts evaluated (n = 50), 58% were euploid in all sections despite an aneuploid FISH result. Aneuploid blastocysts displayed no evidence of preferential segregation of abnormalities to the TE. In addition, extrusion or duplication of aneuploid chromosomes resulting in UPD did not occur. These findings support the conclusion that cleavage-stage FISH technology is poorly predictive of aneuploidy in morphologically normal blastocysts

    SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH

    Get PDF
    Many studies estimate that chromosomal mosaicism within the cleavage-stage human embryo is high. However, comparison of two unique methods of aneuploidy screening of blastomeres within the same embryo has not been conducted and may indicate whether mosaicism has been overestimated due to technical inconsistency rather than the biological phenomena. The present study investigates the prevalence of chromosomal abnormality and mosaicism found with two different single cell aneuploidy screening techniques. Thirteen arrested cleavage-stage embryos were studied. Each was biopsied into individual cells (n = 160). The cells from each embryo were randomized into two groups. Those destined for FISH-based aneuploidy screening (n = 75) were fixed, one cell per slide. Cells for SNP microarray-based aneuploidy screening (n = 85) were put into individual tubes. Microarray was significantly more reliable (96%) than FISH (83%) for providing an interpretable result (P = 0.004). Markedly different results were obtained when comparing microarray and FISH results from individual embryos. Mosaicism was significantly less commonly observed by microarray (31%) than by FISH (100%) (P = 0.0005). Although FISH evaluated fewer chromosomes per cell and fewer cells per embryo, FISH still displayed significantly more unique genetic diagnoses per embryo (3.2 ± 0.2) than microarray (1.3 ± 0.2) (P < 0.0001). This is the first prospective, randomized, blinded and paired comparison between microarray and FISH-based aneuploidy screening. SNP microarray-based 24 chromosome aneuploidy screening provides more complete and consistent results than FISH. These results also suggest that FISH technology may overestimate the contribution of mitotic error to the origin of aneuploidy at the cleavage stage of human embryogenesis

    What next for preimplantation genetic screening? A polar body approach!

    Get PDF
    Screening of human preimplantation embryos for numerical chromosome abnormalities has been conducted mostly at the preimplantation stage using fluorescence in situ hybridization. However, it is clear that preimplantation genetic screening (PGS) as it is currently practiced does not improve live birth rates. Therefore the ESHRE PGS Task Force has decided to start a proof of principle study with the aim of determining whether biopsy of the first and second polar body followed by subsequent analysis of the complete chromosome complement of these polar bodies using an array based technique enables a timely identification of the chromosomal status of an oocyte. If the principle of this approach can be proven, it is obvious that a multicentre randomized controlled trial should then be started to determine the clinical value of this technique. In this way the ESHRE PGS Task Force hopes to redirect preimplantation screening from the blind alley to the main road of assisted reproduction

    Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of Friedreich ataxia

    Get PDF
    Copyright @ 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. There is a correlation between expansion length, the amount of residual frataxin and the severity of disease. As the coding sequence is unaltered, pharmacological up-regulation of FXN expression may restore frataxin to therapeutic levels. To facilitate screening of compounds that modulate FXN expression in a physiologically relevant manner, we established a cellular genomic reporter assay consisting of a stable human cell line containing an FXN-EGFP fusion construct, in which the EGFP gene is fused in-frame with the entire normal human FXN gene present on a BAC clone. The cell line was used to establish a fluorometric cellular assay for use in high throughput screening (HTS) procedures. A small chemical library containing FDA-approved compounds and natural extracts was screened and analyzed. Compound hits identified by HTS were further evaluated by flow cytometry in the cellular genomic reporter assay. The effects on FXN mRNA and frataxin protein levels were measured in lymphoblast and fibroblast cell lines derived from individuals with FRDA and in a humanized GAA repeat expansion mouse model of FRDA. Compounds that were established to increase FXN gene expression and frataxin levels included several anti-cancer agents, the iron-chelator deferiprone and the phytoalexin resveratrol.Muscular Dystrophy Association (USA), the National Health and Medical Research Council (Australia), the Friedreich’s Ataxia Research Alliance (USA), the Brockhoff Foundation (Australia), the Friedreich Ataxia Research Association (Australasia), Seek A Miracle (USA) and the Victorian Government’s Operational Infrastructure Support Program

    Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results

    Get PDF
    Several randomized controlled trials have not shown a benefit from preimplantation genetic screening (PGS) biopsy of cleavage-stage embryos and assessment of up to 10 chromosomes for aneuploidy. Therefore, a proof-of-principle study was planned to determine the reliability of alternative form of PGS, i.e. PGS by polar body (PB) biopsy, with whole genome amplification and microarray-based comparative genomic hybridization (array CGH) analysis. In two centres, all mature metaphase II oocytes from patients who consented to the study were fertilized by ICSI. The first and second PBs (PB1and PB2) were biopsied and analysed separately for chromosome copy number by array CGH. If either or both of the PBs were found to be aneuploid, the corresponding zygote was then also processed by array CGH for concordance analysis. Both PBs were biopsied from a total of 226 zygotes from 42 cycles (average 5.5 per cycle; range 1-15) in 41 couples with an average maternal age of 40.0 years. Of these, the ploidy status of the zygote could be predicted in 195 (86%): 55 were euploid (28%) and 140 were aneuploid (72%). With only one exception, there was at least one predicted aneuploid zygote in each cycle and in 19 out of 42 cycles (45%), all zygotes were predicted to be aneuploid. Fresh embryos were transferred in the remaining 23 cycles (55%), and one frozen transfer was done. Eight patients had a clinical pregnancy of which seven were evolutive (ongoing pregnancy rates: 17% per cycle and 30% per transfer). The ploidy status of 156 zygotes was successfully analysed by array CGH: 38 (24%) were euploid and 118 (76%) were aneuploid. In 138 cases complete information was available on both PBs and the corresponding zygotes. In 130 (94%), the ploidy status of the zygote was concordant with the ploidy status of the PBs and in 8 (6%), the results were discordant. This proof-of-principle study indicates that the ploidy of the zygote can be predicted with acceptable accuracy by array CGH analysis of both PB

    Jacobsen syndrome

    Get PDF
    Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears). Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from ~7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia) and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be very severe and require heart surgery in the neonatal period. Newborns with Jacobsen syndrome may have difficulties in feeding and tube feeding may be necessary. Special attention should be devoted due to hematological problems. About 20% of children die during the first two years of life, most commonly related to complications from congenital heart disease, and less commonly from bleeding. For patients who survive the neonatal period and infancy, the life expectancy remains unknown

    Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus

    Get PDF
    In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs

    Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity

    Get PDF
    Preimplantation aneuploidy screening of cleavage stage embryos using fluorescence in situ hybridization (FISH) may no longer be considered the standard of care in reproductive medicine. Over the last few years, there has been considerable development of novel technologies for comprehensive chromosome screening (CCS) of the human genome. Among the notable methodologies that have been incorporated are whole genome amplification, metaphase and array based comparative genomic hybridization, single nucleotide polymorphism microarrays, and quantitative real-time PCR. As these methods become more integral to treating patients with infertility, it is critical that clinicians and scientists obtain a better understanding of their capabilities and limitations. This article will focus on reviewing these technologies and the evidence of their validity

    Quantitative Microscopy Reveals Centromeric Chromatin Stability, Size, and Cell Cycle Mechanisms to Maintain Centromere Homeostasis

    Get PDF
    The deposited item is a book chapter and is part of the series "Centromeres and Kinetochores" published by the publisher Springer Verlag. The deposited book chapter is a post-print version and has been submitted to peer reviewing. There is no public supplementary material available for this publication. This publication hasn't any creative commons license associated.Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.There are no funders and sponsors indicated explicitly in the document.info:eu-repo/semantics/publishedVersio
    corecore