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Abstract (115 words) 

Centromeres are chromatin domains specified by nucleosomes containing the 

histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a 

strong self-templating epigenetic mechanism that renders centromeres heritable. 

We review how specific quantitative microscopy approaches have contributed to 

the determination of the copy number, architecture, size and dynamics of 

centromeric chromatin and its associated centromere complex and kinetochore. 

These efforts revealed that the key to long-term centromere maintenance is the 

slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and 

its cell cycle coupled replication. These features come together to maintain 

homeostasis of a chromatin locus that directs its own epigenetic inheritance and 

facilitates the assembly of the mitotic kinetochore. 

Main text: 7361 words 

1. CENP-A as the key epigenetic determinant of active 

centromeres  
Epigenetic traits are heritable features whose propagation is not solely driven by 

underlying DNA sequences. Centromeres are chromosomal loci whose propagation 

depend on such a mechanism. The current consensus in the centromere field is 

that the centromere-specific histone H3 variant CENP-A lies at the core of a 

positive epigenetic feedback loop and is sufficient to initiate and propagate 

centromeres. CENP-A, along with CENP-B and CENP-C were among the first 

centromere proteins to be identified using antibodies isolated from auto-immune 

sera from human scleroderma patients (CREST)(Earnshaw and Rothfield, 1985). 

These sera stained proteins at all active centromeres but, importantly, they are 

absent from an inactive centromere, suggesting a ´´chromatin based regulation´´ of 

the centromere (Earnshaw and Migeon, 1985). Soon after its initial discovery 

CENP-A was found to have histone-like properties and to copurify with core 

histone proteins (Palmer et al., 1987). Subsequent cloning of the gene, confirmed 

these properties (Sullivan et al., 1994). In 1993, the first human neocentromere 

was described (Voullaire et al., 1993), a functional centromere located on a deleted 
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derivative of chromosome 10 in human patient samples, lacking typical 

centromeric sequence as well as the CENP-B protein that binds to those sequences. 

Indeed, CENP-B knockout mice are viable (Hudson et al., 1998), strengthening the 

notion that centromeric DNA is not the main driver of centromere positioning. In 

addition, centromere specific CENP-A homologues exist in nearly all species 

analyzed so far (Malik and Henikoff, 2003; Talbert et al., 2012), with the exception 

of kinetoplastids and some holocentric insects that do not appear to contain a 

recognizable CENP-A homologue (Akiyoshi and Gull, 2013; Drinnenberg et al., 

2014). A remarkable feature of centromeric chromatin is its requirement for the 

maintenance of centromeric chromatin across the germline in several, but not all 

organisms analyzed thus far. In mammals, early work has shown that CENP-A is 

present in mature bovine sperm, evading protamine deposition (Palmer et al., 

1990), suggesting CENP-A may play a transgenerational role in mammals. Indeed, 

stable paternal transmissions of neocentormeres within human families 

demonstrate that the position of the centromere is inherited epigenetically at least 

through the male germline (Amor et al., 2004; Tyler-Smith et al., 1999). Sperm 

retained CENP-A was also found in X.laevis and D. melanogaster (Dunleavy et al., 

2012; Milks et al., 2009; Raychaudhuri et al., 2012). In Drosophila, a causative role 

for CENP-A in germline centromere maintenance has been shown. Selective 

removal of the CENP-A homologue [known as CID or cenH3 (Talbert and Henikoff, 

2013)] from paternal centromeres resulted in successful fertilization but in the 

selective failure to segregate paternal chromosomes in the zygote, despite normal 

segregation of maternal chromosomes and the availability of a maternal pool of 

CID (Raychaudhuri et al., 2012). The transgenerational necessity of CENP-A is not 

universal in life. C. elegans, sperm is devoid of CENP-A which is provided de novo 

through the maternally deposited pool of CENP-A (Gassmann et al., 2012). Further, 

during oogenesis, pre-existing CENP-A is removed, and is de novo deposited 

(Monen et al., 2005). 

In proliferating somatic cells, loss of CENP-A is lethal due to the severe defects in 

chromosome segregation in all species analyzed (Black et al., 2007a; Blower and 

Karpen, 2001; Buchwitz et al., 1999; Fachinetti et al., 2013; Henikoff et al., 2000; 

Howman et al., 2000; Régnier et al., 2005; Stoler et al., 1995; Talbert et al., 2002) 

Additionally, CENP-A is sufficient for the recruitment of virtually all known 

centromere and kinetochore proteins (Barnhart et al., 2011; Carroll et al., 2009; 

Foltz et al., 2006; Guse et al., 2011; Heun et al., 2006; Liu et al., 2006; Mendiburo et 

al., 2011; Okada et al., 2006), with the exception of the sequence specific DNA 

binding protein CENP-B (Pluta et al., 1992; Voullaire et al., 1993). In a 

groundbreaking study, (Mendiburo et al., 2011) used Drosophila S2 cells to tether 

CENP-A to a naïve chromatin domain containing Lac operator sequences (using a 

LacI DNA binding domain), not previously associated with centromere function. 

Once tethered, CENP-ACID-LacI creates a local nucleosomes pool that is able to 

recruit virtually all known downstream centromere and kinetochore proteins 
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allowing stable binding of microtubules. Importantly, once formed, this nascent 

centromere recruited naïve CENP-ACID, not previously associated with this region, 

even after the initial tether has been lost, indicative of self-propagation of CENP-

ACID. Analogous experiments were performed with the CENP-A loading factor 

HJURP. In this case not only neocentromere formation was observed (Barnhart et 

al., 2011; Hori et al., 2013) but this centromere was shown to rescue chromosome 

stability and cell viability after deletion of the endogenous centromere in chicken 

DT40 cells (Hori et al., 2013). A large network of proteins, termed the constitutive 

centromere associated network (CCAN), is assembled on the centromere 

throughout the cell cycle (Cheeseman and Desai, 2008; Foltz et al., 2006; Izuta et 

al., 2006; Okada et al., 2006). Intriguingly, (Hori et al., 2013) found that tethering of 

the CCAN components CENP-C or CENP-I also initiates centromere formation, 

indicating that the broader centromere is actively participating in maintenance of a 

positive epigenetic feedback loop. These experiments provide compelling evidence 

that CENP-A is central to a positive feedback loop which supports stable 

inheritance of a centromere structure. A key question that follows is, if CENP-A is 

the heritable mark of the centromere, how is it itself inherited? Heritable systems, 

whether genetic or epigenetic, adhere to some basic principles that include (1) the 

ability to survive through key steps of the cell cycle such as DNA replication, 

transcription and mitosis, (2) have the capacity to drive template-directed 

duplication and (3), the duplication of the mark is regulated such that each 

molecule gives rise to an equal number of copies in synchrony with cell division 

(see also Gómez-Rodríguez and Jansen, 2013). In this chapter we discuss our 

current understanding of the heritable nature of centromeric chromatin which is 

the sum of its molecular stability, rates of replenishment and mechanisms that 

maintain these parameters in balance. 

2. CENP-A nucleosomes are stably propagated at centromeres 

through mitotic and meiotic divisions  
Early work indicates that total cellular CENP-A protein exhibits a remarkably long 

half-life and lives as long as the cell itself, equating ~50% decrease per cell 

generation (Shelby et al., 1997). The apparent slow turnover required the 

employment of specific tools to assess protein dynamics. Fluorescence recovery 

after photobleaching (FRAP) which relies on local, irreversible photo-bleaching of 

a fluorophore, followed by subsequent repopulation of a bleached area with 

unbleached molecules provides information of the local rate of protein turnover. 

FRAP experiments on budding yeast kinetochores (containing a single microtubule 

attachment site), revealed that the yeast CENP-A homologue, Cse4 displays very 

low turnover rates at centromeres except during S phase where all of the 

preexisting Cse4 nucleosomes are exchanged (Pearson et al., 2004). Cse4 was 

found to be stable specifically at the centromere, whereas the non-centromeric 

Cse4 is degraded via ubiquitin-mediated proteolysis (Collins et al., 2004). Stable 
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binding of Cse4 at centromeres was recently confirmed in elegant experiments 

using a photoconvertible Cse4-tdEos (Wisniewski et al., 2014). Eos, green in the 

unconverted state can be stably switch to red emission upon short wavelength 

excitation. Following conversion, Cse4 molecules were found to be stably 

associated with centromeres until their turnover during DNA replication. 

Stability of the fission yeast, kinetochore-bound, CENP-A homologue was 

demonstrated using, once again, photobleaching of Cnp1-GFP (Coffman et al., 

2011), which displayed a similar dynamics as previously described for Cse4 

(Pearson et al., 2004). Interestingly, in contrast to the yeasts, holocentric C. elegans 

embryos, characterized by extremely short division times (~15min), 

photobleaching of embryonic CeCENP-A-GFP in anaphase in the one-cell embryo 

results in the complete fluorescence recovery in the next cell division, indicative of 

complete loss of pre-existing CeCENP-A nucleosomes (Gassmann et al., 2012).  

Here, sites for CeCENP-A deposition appear to be based on other genomic features 

rather than pre-existing CENP-A. These regions include those with low 

transcriptional activity in the parental germline (Gassmann et al., 2012) and sites 

of high DNA accessibility (Steiner and Henikoff, 2014). 

In vertebrate cells, following the initial determination of CENP-A stability with a 

tagged shut-off allele in human cells (Shelby et al., 1997), a shut-off in the context 

of a full deletion of the CENP-A gene in chicken DT40 cells (Régnier et al., 2005) 

revealed that the loss rate of the cellular CENP-A pool is very slow indeed, with the 

first mitotic defects occurring only after 7-8 cell cycles. Similar results were 

obtained in human cells after conditional deletion of CENP-A (Fachinetti et al., 

2013). The fact that these cells can survive for extended amount of time without 

continuous supply of fresh CENP-A, strongly suggests that pre-existing CENP-A, 

once assembled into nucleosomes, remains stably bound to centromeric 

chromatin. While these studies determined that CENP-A turns over slowly, 

establishing the actual turnover rate proved difficult to determine. The FRAP 

methodology is suitable for determining protein dynamics at short time scales 

such as in organisms which have a short cell division time, but proofs limited for 

dissecting protein turnover and replenishment rates at long time intervals. This 

limitation was surmounted by the use of a fluorescent pulse labeling strategy such 

as SNAP-tag technology, which allows for pulse labeling and visualization of 

different cohorts of the same protein within whole cell populations. SNAP is a 

derivative of a human DNA repair enzyme, O6-alkylguanine-DNA alkyltransferase 

(AGT). The endogenous AGT enzyme recognizes O6-alkylated guanine in DNA, and 

transfers the alkyl group to a reactive cysteine residue. This self-labeling capacity 

is exploited in a mutant version of AGT (commonly known as SNAP) which has a 

high affinity towards synthetically engineered small, cell permeable molecules, 

such as benzylguanine (BG)(Keppler et al., 2003). The enzymatic reaction between 

SNAP and its substrate is irreversible, highly efficient and specific. Combining 

serial labeling of SNAP-tagged proteins with different SNAP substrates enables 
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visualization and fate determination of pre-existing versus newly synthesized 

pools of the same protein (see Bodor et al., 2012 for extended review). Following a 

pulse labeled cohort of CENP-A-SNAP molecules over the course of 48-72 hours, 

demonstrated the stable transmission of CENP-A through mitotic divisions (Bodor 

et al., 2013; Jansen et al., 2007). The loss rate of this pool was found to equate 

~50% during each cell division, consistent with quantitative recycling of old CENP-

A during S phase, with no additional turnover (Bodor et al., 2013; Dunleavy et al., 

2011; Jansen et al., 2007). This high rate of retention appears to be unique to 

CENP-A nucleosomes. Similar pulse labeling experiments on H3.1 and H3.3 did not 

reveal such retention at centromeric chromatin (Bodor et al., 2013; Falk et al., 

2016), indicating that the property of stable transmission is linked to CENP-A 

itself, not the centromeric chromatin environment as a whole. However, histone 

H4 shows a striking differential stability. In the genome overall its turnover rates 

are similar to that of H3.1, but at the centromere H4 is retained to the extent of 

CENP-A (Bodor et al., 2013). CENP-A directly contacts H4 in the prenucleosomal 

complex as well as within the nucleosome, forming a highly rigid structure (Black 

et al., 2004, 2007b), likely directly stabilizing H4 at the centromere. The other 

remaining nucleosome partners, H2A and H2B, like H3.1 and H3.3 do not display 

any elevated retention at the centromere (Bodor et al., 2013). Hence, CENP-A/H4 

forms a stable subnucleosomal complex that represents the epigenetic core of the 

centromere which is quantitatively maintained throughout multiple cell divisions. 

The portion of CENP-A that confers its centromere targeting lies within its histone 

fold domain (HFD), in a subdomain termed CENP-A targeting domain (CATD), 

consisting of loop1 and the α2-helix (Black et al., 2004). Replacement of the 

equivalent domain in H3 with that of CENP-A is sufficient to target an H3CATD 

chimera to centromeres (Black et al., 2004, 2007a) and neocentromeres (Bassett et 

al., 2010). Importantly, the CATD confers increased conformational rigidity to 

(CENP-A/H4)2 tetramers as well as to CENP-A nucleosomes (Black et al., 2004, 

2007b) and maintains the same loading dynamics as wild type CENP-A (Bodor et 

al., 2013). Remarkably, although not all CENP-A properties are reproduced after a 

genetic substitution by H3CATD (Fachinetti et al., 2013), this chimera retains the 

capacity to maintain its own centromeric levels over multiple cell cycles, 

suggesting that CATD is the critical subdomain responsible for longevity of the 

CENP-A nucleosome in vivo. Therefore, CATD emerges as a key molecular 

determinant discriminating CENP-A from histone H3, and implies that the extreme 

stability of CENP-A nucleosomes is encoded within CENP-A molecule itself. Recent 

work however defined CENP-C, a member of CCAN network, as an additional 

extrinsic factor contributing to CENP-A stability. CENP-C binds directly to 

chromatin-bound CENP-A, and as a consequence, induces structural changes in 

conformation of CENP-A nucleosomes. This result in increased rigidity of CENP-A 

nucleosomes, a feature likely contributing to its stable maintenance at 

centromeres, since CENP-C depletion causes a  rapid loss of CENP-A from the 

chromatin (Falk et al., 2015). 
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The most striking example showcasing extreme stability of CENP-A nucleosomes is 

recent work in female mouse meiosis (Smoak et al., 2016). Like in humans, mouse 

oocytes are arrested in meiotic prophase I for an extended period of time. CENP-A 

is readily detected in arrested mouse oocytes. However, no assembly occurs at any 

appreciable rate. Remarkably, deletion of the CENP-A in early oogenesis has no 

impact on long term (~1 yr) retention of centromeric CENP-A despite the lack of a 

nascent pool.  

3. CENP-A copy number and the size of centromeric chromatin 
Due to its particularly strong epigenetic nature, centromeres represent an ideal 

model system for studying the basic principles of epigenetic inheritance. In the 

case of genetic inheritance, one DNA molecule will give a rise to two, and these will 

be inherited by two daughter cells. Likewise, a pre-S phase, parental centromere 

will give rise to two daughter centromeres, in a process that ultimately depends, 

not only on CENP-A but on a critical number of CENP-A molecules to maintain 

centromere identity. 

3.1. Budding yeast 

Initial biochemical characterization of centromeric chromatin was performed on 

the non-repetitive point centromere of budding yeast. In contrast to higher 

eukaryotes, whose centromeres associate with highly repetitive long DNA regions, 

S.cerevisiae centromeres assemble on a unique ~125 bp DNA sequence, allowing 

Chromatin Immunoprecipitation (ChIP) analysis of CENP-A bound domains. This 

approach found the budding yeast CENP-A homolog, Cse4 to be highly enriched at 

a single nucleosomes position and devoid from the adjacent sequences (Furuyama 

and Biggins, 2007), strongly indicating that budding yeast centromeres harbor a 

single stably bound Cse4 nucleosome. Since S. cerevisiae contains 16 clustered 

centromeres, bearing two Cse4 molecules per nucleosome, yeast centromere foci 

have been extensively used as fluorescent standard representing 32 molecules. 

Orthogonal methods to determine Cse4 copy number include fluorescence 

correlation spectroscopy (FCS) measurements of Cse4-EGFP (Shivaraju et al., 

2012). FCS provides a measure of protein concentration in solution by determining 

fluctuations of fluorescence as molecules pass through a sub-femtoliter volume 

excited by a laser. FCS was used to calibrate cytosolic EGFP fluorescence and 

applied as standard to estimate the number of Cse4-EGFP molecules at the cluster 

of 16 centromeres. The results pointed at a single molecule of Cse4 per 

centromere, a surprisingly low number, which only transiently doubles in 

anaphase through mitotic exit. However, these changes in fluorescence could be 

confounded by the higher degree of centromeric chromatin compaction at this 

stage (Pearson et al., 2001; Wisniewski et al., 2014). Another attempt to count the 
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absolute number of  Cse4 (Aravamudhan et al., 2013) used stepwise 

photobleaching to find ~1.7 molecules at S. cerevisiae centromeres.  

However, the single Cse4 nucleosome per centromere model was challenged by 

two contemporaneous studies that combined fluorescence measurements of Cse4-

GFP in living cells with established external fluorescent standards.  Using E. coli 

EGFP-MotB (~22 molecules per focus) as a fluorescent standard (Coffman et al., 

2011), authors reported 8 Cse4 molecules per centromere. In a second study 

(Lawrimore et al., 2011) multiple fluorescent standards were employed, including 

single EGFP molecules, rotavirus-like particle-GFP-VLP2/6 (containing 120 EGFP 

molecules), a stably integrated 4-kb LacO array (containing 102 potential binding 

sites for LacI-GFP dimers) as well as the GFP-MotB protein from E.coli. By 

combining these standards, the authors obtained a mean number of 3,5-6 Cse4 

molecules per centromere. Further, centromere dependency on a single 

nucleosome is also inconsistent with the observation that the amount of Cse4 can 

be reduced by ~40–60%, without affecting kinetochore-microtubule attachments 

(Haase et al., 2013). It is possible that, in addition to a single stable positioned Cse4 

nucleosome, extra copies are locally bound e.g. in a chaperone complex near the 

centromere that would be captured by microscopy-based methods.  

The most recent study on this theme (Wisniewski et al., 2014), casts some doubt 

on previous studies, reporting extra-centromeric nuclear localization of Cse4 and 

impaired budding yeast growth when Cse4 is C-terminally GFP tagged. Normal cell 

growth can be obtained when Cse4 is internally tagged within its unstructured N-

terminal tail. This study reported ~2 molecules of Cse4 per centromere based on 

ratiometric measurements against TetR-GFP bound to a tetO array. Nevertheless, it 

is not clear whether the tag interference affects all studies in a similar manner. 

Even though the precise CENP-ACse4 remains elusive (if there is indeed a fixed 

number), there is general consensus that few (≤4) nucleosomes are present on 

budding yeast centromeres. 

3.2. Other yeasts 

The uncertainties of the Cse4 copy number propagated to attempts to count CENP-

A at centromeres of other organisms. Based on Cse4, numbers were determined at 

centromeres of two other yeast species, C. albicans and fission yeast, S. pombe, 

(Joglekar et al., 2008).  The authors reported ~5 molecules of CENP-ACnp1 at fission 

yeast centromeres and ~8 CaCse4 molecules in C. albicans. Taking into account the 

uncertainty in the budding yeast numbers, Candida features between 8 and 32 

molecules of CENP-ACaCse4 per centromere. For fission yeast, the range would be 5–

20 molecules per centromere. However, (Coffman et al., 2011) reported that the 

fission yeast strain used for these comparisons, is probably expressing a competing 

wildtype Cnp1 resulting in underestimation of Cnp1 numbers based on 

fluorescence. To readdress these confounded numbers, the authors used a clean 
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genetic substitution of Cnp1 and the bacterial flagellar motor protein MotB, as 

fluorescent standard (Coffman et al., 2011; Leake et al., 2006), resulting in a much 

higher estimate of ~226 Cnp1 molecules per centromere. However, it is not clear 

how more than a hundred nucleosomes would fit a space of the 10 kb central core. 

Another, super-resolution-based method was used to count Cnp1 based on the 

photo-activatable protein, mEos2, which converts stochastically from a dark state 

to a fluorescent state once illuminated with low-intensity light (Lando et al., 2012). 

Subsequent bleaching ensures that each molecule is counted only once. Potential 

reactivation of fluorescence (blinking) can lead to double counting of molecules. 

After correction for blinking effects, ~20 molecules of Cnp1 per centromere cluster 

were reported. These numbers were corroborated using ChIP coupled to high 

throughput sequencing (ChIP-seq), identifying ~20 distinct peaks of Cnp1 per 

centromere on average, placing an upper limit to the Cnp1 centromere occupancy 

(~40 nucleosomes per centromere). Taken together, it is clear that fission yeast 

centromeres are defined by a number of CENP-A nucleosomes that is an order of 

magnitude higher compared to budding yeast, clearly defining a regional 

centromere. 

3.3. Metazoans 

The first study carried out in metazoans aiming at establishing a centromeric 

CENP-A copy number used Drosophila imaginal disks carrying CENP-ACID-EGFP as 

the sole source of CID and, once again, employing budding yeast Cse4-GFP as a 

standard for 32 fluorescent molecules (Schittenhelm et al., 2010). According to 

these measurements, 84–336 molecules of CENP-ACID are present per centromere, 

depending on the budding yeast numbers. Similar studies were performed in 

vertebrates, in chicken DT40 cells (Johnston et al., 2010; Ribeiro et al., 2010). The 

Johnston et al. study reported at least 62 molecules (using Cse4 as a fluorescent 

standard). Ribeiro et al., relied on counting of photoblinking events of a 

photoconvertible Dronpa CENP-A fusion arriving at 25 - 40 molecules of CENP-A-

Dronpa. As stated by the authors, variation in photoblinking confound the results 

to some extent. Importantly, both studies were performed in the presence of 

endogenous CENP-A pools, restricting the results to lower estimates. In human 

cells, using a 3D imaging strategy combined with a clean genetic replacement of 

endogenous CENP-A in retinal pigment epithelium (RPE) cells reported ~400 

molecules per centromere (Bodor et al., 2014). Centromere derived YFP-CENP-A 

signals (the only source of CENP-A in the cell) were measured and compared with 

total cellular levels. Remarkably, this analysis showed that while CENP-A is 

enriched at the centromere, on average only 0.44% of cellular CENP-A resides at 

each centromere. Interestingly, this ratio appeared to be fixed between RPE cell 

lines expressing variable levels of CENP-A, suggesting this ratio is likely preserved 

in unmodified, wild type RPE cells. The total cellular pool of CENP-A in wild type 

RPEs was found to be ~91,000 molecules (as determined by quantitative Western 

blotting using highly purified CENPA/H4 as a reference), which translates into 
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~400 molecules of CENP-A per centromere. The results were corroborated by 

employing the yeast the LacO/LacI-GFP standard (Lawrimore et al., 2011) as well 

as a statistical method based on the random segregation of CENP-A during DNA 

replication. Given, the predominantly octameric nature of CENP-A nucleosomes 

(Black and Cleveland, 2011; Hasson et al., 2013), this number converts into ~200 

CENP-A nucleosomes in interphase, which are split into ~100 nucleosomes on 

mitotic centromeres (Figure 1A). Surprisingly, this number is not uniform across 

different cell types which can be as low as 50 nucleosomes, still retaining the 

capacity to form a functional and heritable centromere (Bodor et al., 2014). 

The scarcity of CENP-A nucleosomes at the centromere [1 in 25 compared to H3 on 

average (Bodor et al., 2014) appears to be inconsistent with the stable 

maintenance of a self-templating positive feedback loop, which typically relies on 

local cooperativity (Dodd et al., 2007). However, analysis of nucleosome 

distribution at neocentromeres, where such analysis is possible, shows that CENP-

A nucleosomes tend to be organized in clusters, as also found by chromatin fiber 

analysis (Blower et al., 2002). Within these clusters, individual positions harbor 

CENP-A with a remarkably high occupancy [up to 80% of total cells (Bodor et al., 

2014)], indicative of a strong nucleosome positioning favoring CENP-A. Therefore, 

strong enrichment of CENP-A nucleosomes coupled with their possible clustering 

at the centromere likely provides an ample amount of CENP-A nucleosomes 

sufficient to maintain a positive epigenetic feedback loop (Figure 1B). 

4. The modularity of CENP-A dependent kinetochore assembly 
CENP-A acts as the most upstream component in kinetochore assembly by 

specifying the point of contact between the DNA and mitotic spindle. CENP-A 

directs the formation of the constitutive centromere associated network (CCAN) 

which in turn, during mitosis, recruits a secondary protein complex known as the 

kinetochore. The kinetochore includes the conserved microtubule-binding KMN 

network, consisting of the protein KNL1, the Mis12 and Ndc80 complexes 

(Cheeseman et al., 2004, 2006; DeLuca et al., 2006). Kinetochores serve as a 

platform for binding of dynamic spindle microtubules which exert poleward 

pulling forces onto centromeres and separate sister chromatids in opposite 

direction during anaphase. 

Current models for centromere and kinetochore architecture are based on 

repeated individual subunits, in which the amount of centromere components 

directly dictates the number of downstream kinetochore proteins, and ultimately 

the number of microtubule attachment sites. This form of organization was initially 

proposed in 1991, when islets of proteins recognized via CREST antibodies were 

identified in a stretched centromeric DNA fiber (Zinkowski et al., 1991). Evidence 

for such a modular organization is found at the S. cerevisiae point centromere. 

Joglekar et al used endogenous GFP-tagging of the C-termini of kinetochore 
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proteins and compared copy numbers to centromeric Cse4-GFP as a fluorescent 

standard assuming a single Cse4 nucleosome (Joglekar et al., 2006). They found the 

proteins forming the interface between centromeric chromatin and the 

microtubule plus end to be present in specific stoichiometries.  For example, 1-2 

copies of Mif2p, the yeast CENP-C homolog, 2 – 3 copies of the COMA complex 

(containing several CCAN members), 6-7 copies of Mtw1p, the Mis12 homolog and 

8 copies of the Ndc80 complex. However, it should be noted that the precise 

number of kinetochore units could be potentially higher, depending on the actual 

number of Cse4 molecules at budding yeast centromeres. 

Regional centromeres tend to assemble on large stretches of centromeric DNA 

compared to the budding yeast point centromeres and they are bound by multiple 

spindle microtubules [ranging from 2-4 in fission yeast to ~17 in the case of 

humans (McEwen et al., 2001; Sagolla et al., 2003)]. Initial studies, focused on the 

centromeres of fission yeast and C. albicans (Joglekar et al., 2008), found a 

strikingly constant ratio between the amount of centromeric CENP-A nucleosomes, 

structural components of kinetochore and number of microtubules attached 

during mitosis. Based on mitotic fluorescent intensities of a multitude of 

kinetochore components [in a manner analogous to (Joglekar et al., 2006)], the 

authors revealed that, while absolute numbers differ, the number of kinetochore 

proteins per microtubule attachment are very similar between budding and fission 

yeast. For both yeasts there are 6-8 molecules of KMN network per kinetochore-

microtubule attachment.  These findings strongly argue that the regional 

centromeres of fission yeast are composed of repeated structures reminiscent of 

the ones existing in budding yeast. This apparent kinetochore architecture extends 

to certain metazoan species, such are chicken DT40 cells, in which the copy 

number of CCAN network members (namely CENP-C, CENP-H, CENP-I and CENP-

T) is in nearly stoichiometric relation to KMN network members (Mis12, Knl1 and 

Ndc80), which, once again assemble at ~8 molecules per microtubule (Johnston et 

al., 2010). However, a direct relationship between the number of centromeric 

CENP-A nucleosomes and amount of downstream kinetochore components is 

incompatible with the fact that constitutive overexpression of Cnp1 does not lead 

to significant changes in the copy number of kinetochore protein (Joglekar et al., 

2008). Consistently, in C. albicans, the number of CaCse4 nucleosomes is larger 

than the number of microtubule attachment sites (Joglekar et al., 2008), indicating 

that the relationship between centromeric chromatin and microtubule attachment 

sites is less defined. This notion is further supported by the fact that CENP-A 

depletion in human cells resulting in ~7% of total centromeric (Fachinetti et al., 

2013) or  ~10% of cellular pool  (Liu et al., 2006) had no effect on centromere 

integrity at least in the short term. Upon partial loss of CENP-A, proteins such as 

CENP-C and CENP-T remain largely unaffected (Fachinetti et al., 2013). In an 

extreme case, upon complete acute complete loss of CENP-A, the centromere 

remains mitotically functional at least initially, after which failure to propagate the 



11 
 

centromere in the next division results in gradual loss of centromere components 

(Hoffmann et al., 2016). In agreement with the stoichiometric disconnect between 

centromeric chromatin and the rest of the centromere, altering CENP-A levels in 

human RPE cell line between 40% and 240% relative to wild type, showed no 

significant effect on the amount of critical kinetochore proteins (Bodor et al., 

2014). These included CENP-C and CENP-T, which are responsible for mitotic 

recruitment of the KMN network (Gascoigne et al., 2011), as well as the key 

microtubule binding protein Hec1/NDC80 (Cheeseman et al., 2006; DeLuca et al., 

2006). Taken together, these results argue that on a typical human centromere the 

amount of CENP-A nucleosomes is in excess compared to the critical number 

necessary to maintain the centromere, which could in part be facilitated through 

semi-stable self-regulated recruitment of downstream CCAN proteins. 

Another insight into the relationship between CENP-A chromatin and the 

kinetochore comes from overexpression studies. Excess CENP-A results in its 

mislocalization to non-centromeric sites (Athwal et al., 2015; Heun et al., 2006; 

Lacoste et al., 2014). Mistargeted CENP-A is not randomly distributed, rather it is 

enriched at sites of high histone turnover (Athwal et al., 2015; Lacoste et al., 2014). 

Even at physiological expression levels, CENP-A is present outside the centromere 

in a surprisingly high amounts. Quantitative fluorescence microscopy methods 

have estimated that only ~20% of CENP-A is centromeric and about half of all 

CENP-A is chromatin bound elsewhere. However, due to the large genome size 

these CENP-A nucleosomes represent less than one in a thousand nucleosomes, 

compared to ~50 fold higher enrichment at centromeres (Bodor et al., 2014). 

Nonetheless, despite their presence in non-centromeric genomic locations, these 

CENP-A containing nucleosomes do not instigate the formation of the functional 

centromere (Bodor et al., 2014; Lacoste et al., 2014). It is tempting to speculate 

that whereas these sporadic genomic CENP-A nucleosomes might have limited 

capacity to attract some centromeric components, particularly those that directly 

interact with CENP-A (Gascoigne et al., 2011), the local pool of CENP-A does not 

reach a critical threshold sufficient to initiate the formation of a functional 

centromere. Therefore, rather than maintaining a linear relationship between 

CENP-A nucleosomes and downstream components, the CCAN and the 

kinetochore, once formed, maintain an internal stoichiometry and become to some 

extend independent of fluctuation in the centromeric CENP-A pool size. 

One curious case in which the levels of centromeric CENP-A appear to dictate the 

amount of downstream kinetochore proteins has been reported to occur during 

meiosis in mice (Chmátal et al., 2014). In mammals, during female oogenesis only 

one out of four meiotic product will give rise to the future gamete. The probability 

for any allele to be transmitted should, in principle, follow Mendelian rules of 

inheritance. However, certain ´´selfish´´ genomic elements can skew this ratio and 

are preferentially retained in the mature egg, a process known as meiotic drive. 

The Chmátal et al. study showed that the amount of kinetochore proteins 
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assembled at the meiotic centromere correlates with the amount of CENP-A 

nucleosomes. Chromosomes having fewer CENP-A nucleosomes at the centromere 

relative to the other ones, assembled a lower amount of Hec1/NDC80, which 

results in its positioning near the cell cortex due to asymmetric microtubule forces 

within the meiotic spindle resulting in its preferential exclusion to the polar body. 

The inverse was found for chromosomes with a higher amount of centromeric 

CENP-A nucleosomes, which were preferentially retained in the mature egg. While 

the resulting drive is not large, only by 10% form random (Chmátal et al., 2014), at 

evolutionary time-scales, this would have a profound effect on the frequency of a 

specific chromosome within a population. While in mitosis such inequalities maybe 

equalized by the mitotic checkpoint, this is much weaker during meiosis allowing 

for centromere discrepancies to evolve. 

5. Propagation of centromeric chromatin across cell divisions 
As outlined above, CENP-A nucleosomes are stably maintained and propagated at 

mitotic and meiotic centromeres (Bodor et al., 2013; Jansen et al., 2007; Smoak et 

al., 2016). This unusually slow turnover of CENP-A at each centromere (Falk et al., 

2015) has consequences for how the correct levels are maintained across 

subsequent cell division cycles. New CENP-A histones can either be incorporated at 

a continuous slow rate to compensate for the two fold reduction during S phase, or 

alternatively, assembly is restricted to a discrete cell cycle window to control the 

rate and quantity of assembly. It turns out that, in all species examined thus far, 

control of CENP-A assembly is maintained by rendering it tightly cell cycle 

restricted rather than allowing continuous slow assembly. Given the key role of 

centromeres in mitosis and the fact that CENP-A is lost by two-fold during the 

preceding S phase, it was initially expected that the replenishment of the S phase 

diluted pool of CENP-A would occur prior to mitosis (Csink and Henikoff, 1998; 

Shelby et al., 2000). In budding yeast, as outlined above, CENP-A turns over during 

S phase (Pearson et al., 2004; Wisniewski et al., 2014). Such turnover appears to be 

a common feature among unicellular eukaryotes. In an interesting case of the 

unicellular red algae Cyanidioschyzon merolae, CENP-ACENH3 is detected at the 

centromeres only between S phase and mitosis, and remains undetectable in G1 

phase, indicating eviction of CENP-ACENH3(Kanesaki et al., 2015; Maruyama et al., 

2007). Upon re-entry into subsequent S phase, CENP-ACENH3 is de-novo deposited at 

regional centromeres of C. merolae (Kanesaki et al., 2015). With the exception of 

these single celled organisms, CENP-A assembly appears to be uncoupled from 

DNA replication in metazoans and plants.  

In most animal systems examined, a unique pattern of cell cycle-coupled CENP-A 

replenishment was uncovered where assembly of newly synthesized CENP-A is 

delayed until mitotic exit, in G1 phase of the next cell cycle, after the primary 

function of the centromere has been fulfilled. This paradoxical timing of 

centromeric chromatin assembly was initially discovered in Drosophila and human 
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cells based on steady state fluorescence, FRAP experiments and SNAP-based pulse 

labelling, respectively (Jansen et al., 2007; Schuh et al., 2007). The SNAP 

technology has proven extremely useful in dissecting chromatin dynamics 

(Bergmann et al., 2011; Bodor et al., 2013; Deaton et al., 2016; Dunleavy et al., 

2011; Jansen et al., 2007; Prendergast et al., 2011; Ray-Gallet et al., 2011). To assay 

for the assembly of nascent CENP-A-SNAP specifically, the pre-existing (chromatin 

bound) pool of CENP-A-SNAP is labelled with a non-fluorescent SNAP substrate 

(quench). During the ensuing chase period new, unlabeled CENP-A is synthesized 

which can be fluorescently labeled at a later time point (Bodor et al., 2012). This 

methodology allows for the visualization of centromeres decorated with nascent 

CENP-A. G1 restricted assembly of CENP-A in human cells was confirmed by photo-

bleaching experiments of CENP-A-GFP (Hemmerich et al., 2008), and later also 

found be the conserved in chicken DT40 cells (Silva et al., 2012), and Xenopus 

(Bernad et al., 2011; Westhorpe et al., 2015). A key question that follows is to 

determine how CENP-A assembly is coupled to the cell cycle to maintain correct 

centromere levels. Early work showed that microtubule attachment and 

checkpoint signaling, two key aspects of mitosis, are not required for subsequent 

assembly (Jansen et al., 2007; Schuh et al., 2007). Instead, mitotic passage is 

primarily needed to result in APC-mediated cyclin destruction and concomitant 

loss of Cdk activity. This notion resulted from experiments demonstrating that 

selective inhibition of both Cdk1 and Cdk2 (Cdk1/2) in S or G2 phase is sufficient 

to induce premature, premitotic CENP-A assembly (Silva et al., 2012). CENP-A 

assembly commences rapidly upon Cdk inactivation, either naturally or artificially. 

This has led to a model in which all factors necessary for CENP-A loading are 

present and poised for activity prior to mitotic exit, but are held inactive due to the 

Cdk1/2 activities in S, G2 and mitosis, when these kinases are active. While CENP-

A is the prime candidate regulating propagation of centromeric chromatin, the fact 

that H3CATD chimera still retained G1 restricted timing of loading to the 

centromeres argues that external binding factors are likely contributors to cell 

cycle dependent CENP-A assembly, compared to CENP-A itself (Bodor et al., 2013). 

Indeed, the CENP-A specific chaperone HJURP is exclusively targeted to G1 

centromeres (Dunleavy et al., 2009; Foltz et al., 2009), concurrent with its 

dephosphorylation on Cdk consensus residues (Müller et al., 2014; Stankovic et al., 

2017). Mutation of Cdk responsive residues within HJURP prior to mitotic exit is 

sufficient to induce limited precocious loading of CENP-A at S and G2 centromeres 

(Müller et al., 2014; Stankovic et al., 2017). In addition, ectopic targeting of HJURP 

to centromeres prior to mitotic exit also leads to premature incorporation of 

CENP-A molecules, suggesting that rather than controlling the interaction interface 

between CENP-A and HJURP, the negative regulation occurs primarily at the level 

of localization of the assembly factor (Stankovic et al., 2017). Similarly, Cdk1/2 

activities also negatively regulate centromeric localization of another CENP-A 

assembly factor, the M18 complex. This complex is targeted to centromeres in 

anaphase of mitosis, prior to the onset of CENP-A deposition, and its activity is 
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necessary for subsequent steps in CENP-A deposition which involves the targeting 

of HJURP to the centromeres (Barnhart et al., 2011; Fujita et al., 2007). The largest 

member of the M18 complex, M18BP1 is under Cdk1/2 control, which limits its 

centromeric recruitment until loss of Cdk1 activity in anaphase (McKinley and 

Cheeseman, 2014; Silva et al., 2012; Stankovic et al., 2017). Interestingly, like 

HJURP, forced premature recruitment of M18BP1 to the centromeres can 

overcome negative cell cycle regulation to some extent (McKinley and Cheeseman, 

2014; Stankovic et al., 2017). A single phosphorylation site at Threonine 653 is key 

to this control (Stankovic et al., 2017). This latter study showed that simultaneous 

expression of unphosphorylatable mutant forms of M18BP1 and HJURP, leads to 

their premature centromere targeting, resulting in essentially complete 

reconstitution of CENP-A assembly. 

The requirement and sufficiency of these two targets defines a two-step inhibitory 

mechanism in which Cdk1/2 are directly targeting both assembly factors. This dual 

level control ultimately allows for a strict cell cycle coupled timing of CENP-A 

assembly (Figure 2). Recently, another kinase, Plk1, was shown to act as a positive 

regulator of CENP-A deposition. Its localization to G1 centromeres and 

contemporaneous phosphorylation of M18BP1 proved to be important for robust 

recruitment of the M18 complex to G1 centromeres. Interestingly, Plk1 activity is 

necessary for both canonical and premature (G2 phase) deposition of CENP-A, 

indicating the requirement of positive phospho-signaling at all cell cycle stages. 

Therefore, the strict cell cycle coupling of CENP-A loading is achieved through 

negative Cdk1 and 2-dependant signals, restricting assembly to G1 while positive 

signals, such as Plk1 are needed to stimulate assembly (Figure 2). 

While CENP-A assembly is uncoupled from DNA replication in most eukaryotes, in 

fission yeast and plants, CENP-A assembly occurs in premitotic G2 phase (Lando et 

al., 2012; Lermontova et al., 2006), although the molecular details remain elusive. 

Another outstanding question is assembly control in Drosophila. While G1 phase is 

the major cell cycle window where CENP-A assembly occurs (Lidsky et al., 2013; 

Schuh et al., 2007), in Drosophila somatic cell lines, some degree of assembly also 

takes place in other phases, notably in mitosis (Lidsky et al., 2013; Mellone et al., 

2011). However, in neuroblasts, within the in vivo context of the organism, CENP-A 

assembly remains G1-restricted (Dunleavy et al., 2012). Rather than indicting a 

fundamentally different logic of control, these differences likely reflect 

physiological differences in the efficiency of inhibition by the cell cycle machinery, 

as artificially achieved in human cells. 

In sum, a picture emerges where different mechanisms have evolved all of which 

tie the CENP-A assembly machinery to the cell cycle. However, the importance of 

this for the maintenance of centromere structure and function remains largely 

undefined. 
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6. Possible mechanisms to maintain homeostasis of CENP-A 

levels across cell divisions 
The presence of pre-existing, chromatin bound CENP-A nucleosomes is a 

prerequisite for the stable propagation of centromeric domain. Parental CENP-A 

nucleosomes direct the incorporation of a nascent CENP-A molecules, which are 

placed adjacent to the pre-existing ones (Ross et al., 2016). This precise positioning 

of CENP-A molecules is likely facilitated through interaction between the 

constitutive centromeric protein CENP-C, which on one hand recognizes chromatin 

bound CENP-A (Carroll et al., 2010; Kato et al., 2013), and on the other, forms an 

interaction platform between the M18 licensing complex and centromeric 

chromatin (Dambacher et al., 2012; Moree et al., 2011; Shono et al., 2015; 

Westhorpe et al., 2015). This complex in turn recruits the CENP-A specific 

chaperone HJURP, (Nardi et al., 2016; Stellfox et al., 2016; Wang et al., 2014) which 

deposits newly synthetized CENP-A (Barnhart et al., 2011; Dunleavy et al., 2009; 

Foltz et al., 2009). These molecular connections likely contribute to a closed 

positive epigenetic feedback loop where deposition of new CENP-A is ultimately 

dependent on the previously incorporated pool. However, how the correct CENP-A 

levels are maintained remains an open question. Too little would render 

centromeres dysfunctional [e.g. reducing CENP-A levels to 10% is ultimately 

incompatible with viability of cells (Black et al., 2007a)], while too much CENP-A 

can potentially lead to neocentromere formation as is the case in Drosophila (Heun 

et al., 2006; Olszak et al., 2011). 

The amount of CENP-A present at the centromeres is in a direct proportion to 

varying total cellular levels (Bodor et al., 2014) suggesting that the CENP-A loading 

machinery is not a rate-limiting factor controlling the size of centromeric domain, 

rather, it is CENP-A itself. The challenge to our understanding of how CENP-A 

levels are maintained is the fact that the chromatin bound pool does not exchange, 

rendering it invisible to a classic equilibrium. There is no apparent communication 

between soluble and centromeric CENP-A. This indicates that cells need some 

other measure of how much CENP-A is in chromatin and to adjust the assembly 

accordingly. Given the nature of a positive feedback loop, in the absence of a 

dynamic equilibrium, individual centromeres would have the potential of reaching 

extreme values, spinning out of control unless there is a mechanisms to curb the 

assembly of new CENP-A. In addition, due to the nature of chromatin recycling 

during DNA replication, CENP-A levels would be increasingly variable. Current 

evidence indicates that existing centromeric CENP-A is redistributed stochastically 

during DNA replication. The ratio in pool size between two sister centromeres 

follows a normal distribution averaging at 50/50 with a certain probability that 

one daughter centromere inherits a disproportionally larger (or smaller) number 

of parental CENP-A nucleosomes (Bodor et al., 2014). It is conceivable that there 

are surveillance mechanisms which would monitor and sense imbalanced number 

of CENP-A nucleosomes at each centromere. One possibility is that the CENP-A 
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assembly machinery would incorporate a pool of molecules not in a direct relation 

to the number present in chromatin but load in excess, which has been observed 

(Jansen et al., 2007; Lagana et al., 2010). In this scenario, the correct amount would 

be determined in a later ‘’maturation’’ step, in which the overloaded pool of new 

CENP-A would be removed from the centromere having an excess of parental 

CENP-A, whereas those with reduced levels would be stripped to a lesser extent 

(Figure 3). Should there be such an eviction mechanism, it would have to allow 

discrimination between CENP-A marked for instability versus the one which is 

destined to be stably inherited over cell cycle. Whereas molecular steps allowing 

eviction of overloaded pool of CENP-A are largely unknown, there are reports of 

stabilization of nascent CENP-A occurring in G1 (Lagana et al., 2010; Liu and Mao, 

2016; Perpelescu et al., 2009), suggesting that addition of CENP-A ´´stabilization´´ 

mark would happen prior to DNA synthesis. A recent addition to this theme is the 

report of ubiquitylation of parental CENP-A as a requirement to recruit nascent 

CENP-A (Niikura et al., 2016). Centromeric CENP-A levels could also be normalized 

during  S phase passage, in which the mix of parental and G1-loaded pools of 

CENP-A would be coordinately and preferentially segregated to the grand-

daughter centromere which inherited a decreased number of CENP-A molecules 

from the previous generation. An elegant model has been proposed linking the 

amount of CENP-A assembly in G1 phase directly to the strength of the centromere 

in mitosis (Brown and Xu, 2009). In this model, weaker centromeres would bind a 

smaller number of microtubules that would in turn generate a signal driving the 

assembly of a compensatory number of CENP-A molecules in the subsequent G1 

phase (Figure 1C). One drawback of this model is that it assumes a proportional 

nature of kinetochore assembly in relation to the number of CENP-A molecules. 

However, variations of this model could be extended to modular kinetochores 

(assembled in a fixed rate independently of the number of CENP-A nucleosomes). 

Assuming nearly-equal numbers of microtubules attached to each daughter 

centromere (due to checkpoint signaling), the signal required to stabilize the 

amount of CENP-A molecules would come from the tension generated within 

centromeric chromatin. A speculative idea is that only those CENP-A molecules 

that are under tension are marked for stability whereas superfluous ones are 

marked for removal. In this way, over multiple mitotic divisions the number of 

CENP-A molecules would equalize. Individually or in combination, these 

mechanisms would have to rely on the presence of a yet to be identified rate 

limiting factors or a combination of factors that constitute a more stable measure 

of centromere size. These would need to have a capacity to recognize chromatin-

bound pool of CENP-A and contain ‘’counting’’ properties allowing sensing of the 

size of CENP-A populated domain. CENP-C, a factor stabilizing CENP-A (Falk et al., 

2015) could be one of such factors, limiting CENP-A domain size. 
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Figure 1. An integrated view of human centromere architecture. (A) 

Interphase distribution of CENP-A relative to histone H3 at an average human 

centromere (left) and whole genome level (right) adapted from (Bodor et al., 

2014). (B) Organization of mitotic chromosome in which individual centromeres 

contain ~100 CENP-A nucleosomes, which is in excess of what is required to 

nucleate the kinetochore of a fixed size (right). Compaction of centromeric 

chromatin during mitosis possibly leads to clustering of CENP-A nucleosomes, 

which may reach a critical density of CENP-A nucleosomes for efficient kinetochore 

assembly (left and bottom). (C) Normalization of CENP-A levels could be initiated 

during mitosis through signals dictated by microtubule pulling forces.  
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Figure 2. Overview of mechanisms ensuring cell-cycle coupled CENP-A 

assembly. CENP-A deposition is restricted to early G1 phase by the Cdk1/2 based 

phosphorylation of two key loading factors, M18BP1 and HJURP. During mitosis, 

positive regulation takes place in a form of licencing phosphorylation of M18BP1 

by Plk1. Upon mitotic exit, negative regulation is alleviated and CENP-A assembly 

initiates. An additional step of ´´maturation´´ may be necessary in order to stabilize 

newly-loaded pool of CENP-A and to normalize CENP-A levels. 
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Figure 3. A model for normalization of CENP-A levels across mitotic divisions. 

Stochastic redistribution of CENP-A during S phase may give rise to daughter 

centromeres having an unequal amount of parental nucleosomes upon mitotic exit. 

To accommodate for this, an excessive amount of nascent CENP-A is deposited to 

the centromere in early G1 phase, followed by selective stabilization of a portion of 

newly loaded CENP-A molecules. This would occur in an inverse proportion to the 

number of parental nucleosomes: the greater the number of parental nucleosomes 

is, the smaller the pool of new CENP-A is marked for stability, the remainder of 

which will be evicted. The combination of these two processes (stabilization and 

eviction) could encompass previously proposed ´´maturation´´ step of centromeric 

chromatin.  


