655 research outputs found

    Study of the topological Hall effect on simple models

    Full text link
    Recently, a chirality-driven contribution to the anomalous Hall effect has been found that is induced by the Berry phase and does not directly involve spin-orbit coupling. In this paper, we will investigate this effect numerically in a two-dimensional electron gas with a simple magnetic texture model. Both the adiabatic and non-adiabatic regimes are studied, including the effect of disorder. By studying the transition between both regimes the discussion about the correct adiabaticity criterium in the diffusive limit is clarified.Comment: 8 pages, 7 figures, revtex

    Single-valley high-mobility (110) AlAs quantum wells with anisotropic mass

    Full text link
    We studied a doping series of (110)-oriented AlAs quantum wells (QWs) and observed transport evidence of single anisotropic-mass valley occupancy for the electrons in a 150 \AA wide QW. Our calculations of strain and quantum confinement for these samples predict single anisotropic-mass valley occupancy for well widths WW greater than 53 \AA. Below this, double-valley occupation is predicted such that the longitudinal mass axes are collinear. We observed mobility anisotropy in the electronic transport along the crystallographic directions in the ratio of 2.8, attributed to the mass anisotropy as well as anisotropic scattering of the electrons in the X-valley of AlAs

    Measuring carrier density in parallel conduction layers of quantum Hall systems

    Full text link
    An experimental analysis for two parallel conducting layers determines the full resistivity tensor of the parallel layer, at magnetic fields where the other layer is in the quantum Hall regime. In heterostructures which exhibit parallel conduction in the modulation-doped layer, this analysis quantitatively determines the charge density in the doping layer and can be used to estimate the mobility. To illustrate one application, experimental data show magnetic freeze-out of parallel conduction in a modulation doped heterojunction. As another example, the carrier density of a minimally populated second subband in a two-subband quantum well is determined. A simple formula is derived that can estimate the carrier density in a highly resistive parallel layer from a single Hall measurement of the total system.Comment: 7 pages, 7 figure

    Mesoscopic magnetoelectric effect in chaotic quantum dots

    Full text link
    The magnitude of the inverse Faraday effect (IFE), a static magnetization due to an ac electric field, can be strongly increased in a mesoscopic sample, sensitive to time-reversal symmetry (TRS) breaking. Random rectification of ac voltages leads to a magnetization flux, which can be detected by an asymmetry of Hall resistances in a multi-terminal setup. In the absence of applied magnetic field through a chaotic quantum dot the IFE scale, quadratic in voltage, is found as an analytic function of the ac frequency, screening, and coupling to the contacts and floating probes, and numerically it does not show any effect of spin-orbit interaction. Our results qualitatively agree with a recent experiment on TRS-breaking in a six-terminal Hall cross.Comment: 4+ pages, 2 figures; v2-published version, small change

    X-ray photoemission characterization of La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} films

    Full text link
    The Curie temperature and x-ray photoemission spectra of thin films of La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} (LCSMO) have been studied as a function of the Ca/Sr ratio. The films were grown by off-axis cosputtering from individual targets of La_{0.67}Ca_{0.33}MnO_{3} (LCMO) and La_{0.67}Sr_{0.33}MnO_{3} (LSMO) onto (100) oriented NdGaO_{3} substrates. The films grow with a (100) orientation, with no other orientations observed by x-ray diffraction. For the alloy mixtures, the Curie temperature, T_C, varies slowly as the Ca/Sr is decreased, remaining \approx 300 K, while for the LCMO and LSMO films T_C is 260 and 330 K, respectively. The Mn-O valence structure is composed of two dominant peaks, whose positions undergo a change as the Ca fraction is decreased. The core lines behave as linear combinations of lines from pure LCMO and LSMO.Comment: 3 pages, 5 eps figures. To be published in Journal of Applied Physics (Proceedings of MMM'98

    Different effects of Ni and Co substitution on the transport properties of BaFe2As2

    Full text link
    We report resistivity and Hall effect results on Ba(Fe1-xNix)2As2 and compare them with those in Ba(Fe1-xCox)2As2. The Hall number RH is negative for all x values from 0.01 to 0.14, which indicates that electron carriers dominate the transport both in the magnetic and paramagnetic regime. We analyse the data in the framework of a two-band model. Without any assumption on the number of carriers, we show that the electron resistivity can be estimated with good accuracy in the low temperature paramagnetic range. Although the phase diagrams of the two families are very similar with respect to the extra electrons added in the system, we find that the transport properties differ in several aspects. First, we evidence that the contribution of holes to the transport is more important for Ni doping than for Co doping. Secondly, Ni behaves as a stronger scatterer for the electrons, as the increase of the residual electron resistivity rho/x is about four times larger for Ni than for Co in the most doped samples.Comment: 8 pages, 8 figure

    Effect of atomic ordering on the magnetic anisotropy of single crystal Ni80Fe20

    Get PDF
    We investigate the effect of atomic ordering on the magnetic anisotropy of Ni80Fe20 at.% (Py). To this end, Py films were grown epitaxially on MgO (001) using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). Aside from twin boundaries observed in the latter case, both methods present high quality single crystals with cube-on-cube epitaxial relationship as verified by the polar mapping of important crystal planes. However, X-ray diffraction results indicate higher order for the dcMS deposited film towards L12 Ni3Fe superlattice. This difference can be understood by the very high deposition rate of HiPIMS during each pulse which suppresses adatom mobility and ordering. We show that the dcMS deposited film presents biaxial anisotropy while HiPIMS deposition gives well defined uniaxial anisotropy. Thus, higher order achieved in the dcMS deposition behaves as predicted by magnetocrystalline anisotropy i.e. easy axis along the [111] direction that forced in the plane along the [110] direction due to shape anisotropy. The uniaxial behaviour in HiPIMS deposited film then can be explained by pair ordering or more recent localized composition non-uniformity theories. Further, we studied magnetoresistance of the films along the [100] directions using an extended van der Pauw method. We find that the electrical resistivities of the dcMS deposited film are lower than in their HiPIMS counterparts verifying the higher order in the dcMS case.Comment: 8 page

    Hole and Electron Contributions to the Transport Properties of Ba(Fe_(1-x)Ru_x)_2As_2 Single Crystals

    Full text link
    We report a systematic study of structural and transport properties in single crystals of Ba(Fe_(1-x)Ru_x)_2As_2 for x ranging from 0 to 0.5. The isovalent substitution of Fe by Ru leads to an increase of the a parameter and a decrease of the c parameter, resulting in a strong increase of the AsFeAs angle and a decrease of the As height above the Fe planes. Upon Ru substitution, the magnetic order is progressively suppressed and superconductivity emerges for x > 0.15, with an optimal Tc ~ 20K at x = 0.35 and coexistence of magnetism and superconductivity between these two Ru contents. Moreover, the Hall coefficient RH which is always negative and decreases with temperature in BaFe2As2, is found to increase here with decreasing T and even change sign for x > 0.15. For x_Ru = 0.35, photo-emission studies have shown that the number of holes and electrons are similar with n_e = n_h ~ 0.11, that is twice larger than found in BaFe2As2 [1]. Using this estimate, we find that the transport properties of Ba(Fe_0.65Ru_0.35)_2As_2 can be accounted for by the conventional multiband description for a compensated semi-metal. In particular, our results show that the mobility of holes is strongly enhanced upon Ru addition and overcomes that of electrons at low temperature when x_Ru > 0.15.Comment: new version with minor correction
    corecore