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We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local

inhomogeneities in a specimen’s material properties in the combined linear limit of a weak

perturbation over an infinitesimal area in a small magnetic field. We apply these expressions both to

four-point probe measurements on an infinite plane and to symmetric, circular van der Pauw discs,

obtaining functions consistent with published results. These new expressions speed up calculation of

the sensitivity for a specimen of arbitrary shape to little more than the solution of two Laplace

equation boundary-value problems of the order of N3 calculations, rather than N2 problems of total

order N5, and in a few cases produces an analytic expression for the sensitivity. These functions

provide an intuitive, visual explanation of how, for example, measurements can predict the wrong

carrier type in n-type ZnO. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826490]

I. INTRODUCTION

The charge transport measurements, resistivity, q, and

Hall coefficient, RH, are subatomic microscopes, revealing

how a material treats its electrons and holes. For a film or

thin specimen of thickness, d, in a field of magnetic flux den-

sity, B, measuring one or two four-wire resistances, Ri, is

sufficient for looking through this microscope. These resis-

tances are next converted into the two-dimensional charge

transport quantities, sheet resistance, RS ¼ q=d, and Hall

sheet resistance, RHS ¼ RHB=d, before being converted

Ri ! RS ! q

Ri ! RHS ! RH ðconversion to 2D;

3D charge transport quantitiesÞ

into the charge transport quantities, using well-known for-

mulas appropriate to the specific measurement technique.1–6

However, those formulas break down when the local values

of the charge transport quantities vary within the sample.

Recent studies of semiconducting ZnO, for example, have

confirmed that a highly radially inhomogeneous square

specimen can yield the wrong sign for the Hall signal, which

might explain some confusion in the literature as to whether

the principal charge carriers are electrons or holes.7,8

Researchers had used the van der Pauw [vdP] method1,2 but

had failed to place electrodes at the edges of the films, as

required by the vdP technique. The general analytical

description of four terminal measurements with electrodes

placed in the interior of a film with insulating boundaries

has more recently been developed to describe this case.5,9

One would expect similar issues with another four-wire

measurement technique, the four-point-probe [4PP]

approach,3,4 which allows researchers to move an array of

four point electrodes throughout the interior of a film, mak-

ing it ideal for testing the uniformity of semiconductor

wafers during micro- or nanofabrication.10

The study of the effects of macroscopic inhomogeneity on

charge transport properties dates back over sixty years to the

study of Hall measurement sensitivity to inhomogeneous mag-

netic fields,11–17 but more recently one group of researchers

[SLU group], studying this problem for vdP geometries,

defined, numerically calculated, and then directly measured

what they have called resistive and Hall weighting functions, f
and g,18–23 for a variety of specimen shapes, quantifying the

sensitivity of charge transport measurement to local inhomoge-

neities in RS and RHS. This group’s work showed in a rigorous

fashion much of what had already been largely assumed by

researchers: the advantages of using square specimens rather

than circular ones,18 of using cloverleafs and crosses rather

than circular and square discs,20 and of placing electrodes at

the corners of a square specimen rather than along its edges.18

Another group of researchers [DTU group], studying sheet re-

sistance and Hall (micro-Hall) effect measurements with linear

4PP arrays, developed a complementary notation24–26 and has

numerically calculated sensitivities of measured configuration

resistances, Ri;m, to local variations of not only RS and RHS but

also of the specimen’s microscopic materials properties, such

as sheet carrier density, NS, and mobility, l.

In this paper, we derive the relation between the SLU

and DTU notations and we develop an analytic expression

for these weighting functions (or sensitivities), solving sev-

eral geometries analytically. Along the way we compare

these calculated functions to numerical analysis of pathologi-

cal Hall measurements in semiconducting ZnO, confirming

the usefulness of these functions in predicting the effects of

macroscopic transport inhomogeneities.
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II. FOUR-WIRE CHARGE TRANSPORT
MEASUREMENT

Ignoring current reversal, there are six configurations,

which we will label by their resistances, Ri, for attaching a

current source to a specimen having four electrodes. Half of

these are shown in Figure 1, both for the vdP geometry

(above, i¼ 1, 2, 5) and for the linear 4PP array (below,

i¼A, B, C), while for each of these configurations there is

another, ~Ri, which we shall call its reciprocal configuration,
for which the Reciprocity Theorem states that ~Ri ¼ Ri,

formed by simply exchanging current and voltage electrodes.

A pair of reciprocal configurations are shown in Fig. 2 for

both a square vdP and a linear 4PP arrangement. Although

equal for zero magnetic field, the application of a magnetic

field near a vdP or micro-Hall specimen can cause Ri and ~Ri

to differ by an amount proportional to RHS, the Hall sheet

resistance.

Sheet resistance measurements are performed via single

or dual configuration measurements. In single configuration

measurements, resistance, Ri, is measured and converted to

sheet resistance, RS;m, through the linear relation

RS;m ¼ aiRi single configuration :

The geometry correction factor ai is determined from knowl-

edge of the specimen geometry and electrode positions.

Examples of ai are shown in Table I for the limiting cases of

equidistant 4PP measurements on an infinite plane and sym-

metric (R1 ¼ R2) vdP measurements.

Hall measurement is more direct (this does not include

micro-Hall which rely on geometrical correction). In the

presence of a magnetic field, the van der Pauw geometry

ideally allows for the direct calculation of the Hall sheet re-

sistance either by reversing the field or by measuring both R5

and its reciprocal configuration

RHS ¼

1

2
½R5ðBÞ � R5ð�BÞ�

1

2
½R5ðBÞ � ~R5ðBÞ�

reversing field

single-field:

8>>><
>>>:

In this paper we will ignore the zero-field offset in R5 and

assume only the B�dependent portion of R5 when we write

R5;B.

For sheet resistance characterization it is advantageous

to perform dual-configuration measurements over single-

measurement and solving the transcendental equations1,2,27,28

FIG. 1. Principal resistance configura-

tions, Ri, for vdP (i¼ 1, 2, 5) and

square 4PP geometries (i¼A, B, C)

(above) and for the linear 4PP geome-

try (below). The distance between ad-

jacent electrodes, the pitch, p, is

marked for R1 above and RA below.

FIG. 2. Two resistance configurations and their reciprocal configurations.

Top: the vdP configuration R5 and its reciprocal ~R5. Bottom: the linear 4PP

configuration RB (left) and its reciprocal ~RB (right). The remaining recipro-

cal configurations, ~Ri, are also obtained by swapping current electrodes for

voltage electrodes.

TABLE I. Values for the normalization constant, ai ¼ RS=Ri, for the three

interdependent zero-magnetic-field configurations for both 4PP on an infinite

plane and symmetric vdP techniques, as defined in Fig. 1. In the absence of

a magnetic field, RA ¼ RB þ RC and R1 ¼ R2 þ R5.

Equidistant four-point

probe (4PP) in infinite plane

Symmetric van der

Pauw (vdP)

aA ¼
p

ln 2
¼ 4:532 a1 ¼

p
ln 2
¼ 4:532

aB ¼
2p
ln 3
¼ 5:719 a2 ¼

p
ln 2
¼ 4:532

aC ¼
2p

lnð4=3Þ ¼ 21:84
a5 ¼ undefined

163710-2 Koon et al. J. Appl. Phys. 114, 163710 (2013)
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e�2pRA=RS þ e�2pRC=RS ¼ 1 linear 4PP; infinite plane;

e�pR1=RS þ e�pR2=RS ¼ 1 vdP;

since these can eliminate the need for detailed knowledge of

the specimen geometry in calculating ai in Table I.

However, while the strict application of the vdP method

requires one to measure two separate resistances and solve

the above equation to extract RS, one may simply measure

one four-point resistance for a material of uniform composi-

tion and assume a constant ai throughout the measurement,

provided there are no variations in material properties, sav-

ing time and calculation. One disadvantage of taking this

shortcut is that some regions of the specimen are negatively
sensitive to local variations in charge transport for a single

configuration, implying that the measured value RS;m or

RHS;m may fall outside its range of local values within the

specimen, as seen for RHS;m in the ZnO data.7,8 This problem

vanishes for true vdP dual measurements.18 For the remain-

der of this document we will focus mostly on single-

configuration measurements since this method is very

commonly used in research, due to simplicity.

For nonzero magnetic flux density B 6¼ 0, geometrical

magnetoresistance adds an additional correction factor when

electrodes are not all placed on specimen boundaries.28 For

symmetric vdP specimens and B ¼ 0, R5 ¼ ~R5 ¼ 0, and so

a5 is undefined, meaning that one cannot use configuration

i ¼ 5 of a perfectly symmetric vdP specimen for measuring

the sheet resistance.

III. THE TERMINOLOGY OF SENSITIVITY

The SLU group defines resistive and Hall weighting

functions, fi and gi—generalized for any configurations, Ri—

dimensionless quantities satisfying

RS;m ¼ aiRi ¼
1

X

ð
X

RS;L fidX0;

RHS;m ¼
1

X

ð
X

RHS;LgidX0;

and ð
X

f1dX0 ¼
ð
X

f2dX0 ¼
ð
X

g5dX0 ¼ X;

where RS;L [RHS;L] is the local value of the [Hall] sheet resist-

ance, and the integration proceeds over the area of the speci-

men, X. The first of these expressions can be written as a

second derivative, as the DTU group has noted24,25

fi ¼ Xai
@2Ri;m

@A@RS;L
¼ Xai lim

DRS;L=RS�1

DRi;m

DADRS;L
½vdP�;

where ai ¼ RS=Ri (Table I), DA is the area of a perturbation

in the local sheet resistance of size DRS;L. The derivative

form of the equation is appropriate for the weak, small-area

limit (DRS;L=RS � 1, DA=A� 1), and the finite difference

form is more appropriate to stronger or larger-area inhomo-

geneities. The generalized dimensionless sensitivity24,25 has

the form

ST
t ¼

p2DT=T

DAðDt=tÞ ;

in which p is the electrode pitch (Fig. 1) and the perturbation

of a local property t (e.g., RS;L or RHS;L) alters some macro-

scopic property, T. In this formalism, the DTU group defines

resistive sensitivities as

S
Ri;m

RS;L
¼ p2ai

@2Ri;m

@A@RS;L
¼ p2ai lim

DRS;L=RS�1

DRi;m

DADRS;L
½4PP�:

From this we see that the SLU and DTU formalisms are

equivalent, except for the choice of effective normalization

area, A, with A ¼ X for vdP and A ¼ p2 for the 4PP tech-

nique, or

fi

S
Ri;m

RS;L

)
¼ Aai

@2Ri;m

@A@RS;L
¼ Aai lim

DRS;L=RS�1

DRi;m

DADRS;L

(
vdP

4PP
:

(1)

The sensitivity to the local Hall sheet resistance can be writ-

ten as

gi

S
RHS;m

RHS;L

)
¼ A

@2RHS;m

@A@RHS;L
¼ A lim

DRHS;L=RHS�1

DRHS;m

DADRHS;L

vdP

4PP
:

(

(2)

IV. THE ZERO-FIELD, INFINITESIMAL-AREA,
WEAK LIMIT

The sheet current density, JS ¼ J � d, is related to the

electric field by JS ¼ G E, where the elements of the con-

ductance tensor are given by G ¼ Gd Gh

�Gh Gd

� �
, and the

direct and Hall conductances, Gd and Gh, are related in turn

both to RS and RHS, and the basic materials properties by

Gd ¼
RS

R2
S þ R2

HS

¼ cos2HH

RS
¼ NSel

1þ l2B2
;

Gh ¼
RHS

R2
S þ R2

HS

¼ sin 2HH

2RS
¼ rHNSel2B

1þ l2B2
¼ lHBGd;

where NS is the sheet carrier density, l is the carrier mobility

(and lH is the Hall mobility), and B is the magnetic flux den-

sity. By convention, we take B ¼ Bez normal to the sample

surface. The Hall angle is defined by tan HH ¼ RHS=RS

¼ Gh=Gd, and the Hall scattering factor, rH, is of order 1 and

varies weakly with l, B, and the volume carrier density,

n ¼ NS=d. We will use the approximation lH � l for the re-

mainder of this paper.

For a thin laminar sheet in the xy-plane with a magnetic

field along the positive z-axis, the continuity equation

r � JS ¼ 0 (except at current injection points) implies

163710-3 Koon et al. J. Appl. Phys. 114, 163710 (2013)
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r2/ ¼ � I

Gd
½dðr� rþÞ � dðr� r�Þ�

þ rGd

Gd
� Eþ ez �

rGh

Gd
� E;

¼ � I

Gd
½dðr� rþÞ � dðr� r�Þ� �

r �G
Gd
� r/; (3)

for a current source and sink at rþ and r�, respectively. A

local perturbation Gd ! Gd þ DGd and Gh ! Gh þ DGh

inside a region of area DAaround a point r0 simplifies, in the

DA! 0 limit, to

Gd ! Gd þ DADGddðr� r0Þ;
Gh ! Gh þ DADGhdðr� r0Þ;

where the effective normalization area is A ¼ X [A ¼ p2] for

the vdP [4PP] specimen and, as noted in Refs. 18 and 19, a

delta-like local perturbation in Gd [Gh] produces an effect

identical to placing a point dipole at that location, r0, propor-

tional to and parallel [perpendicular] to the local electric

field, Eðr0Þ.
In earlier works18–23 the SLU group has referred to the

sensitivity functions calculated from Eq. (3) as the

“resistivity weighting function” and the “Hall weighting

function,” stating that the latter was due to inhomogeneities

in the Hall angle. Equation (3) suggests that we should

instead call �fi the “conductance weighting function” and gi

the “Hall conductance weighting function,” since Gd and Gh

are the quantities that are averaged by the measurement pro-

cess, not RS and RHS.

In the linear limit of weak perturbations in Gd and Gh

over an infinitesimal area, the local electric field is

unchanged by the perturbation and we can express it in terms

of the Green’s function

EðrÞ ¼ I

Gd
½rGðr; rþÞ � rGðr; r�Þ� :

Meanwhile, we can use Green’s formula

/ðrÞ ¼
ð
X

Gðr; r0Þr2/ðr0ÞdX0

þ
ð
x

½/ðr0Þr0Gðr; r0Þ �Gðr; r0Þr0/ðr0Þ�dx0;

where r2Gðr; r0Þ ¼ dðr� r0Þ and x is the specimen bound-

ary, to calculate / from Eq. (3). For a specimen of infinite

area, or in the B ¼ 0 case, we can ignore the second integral.

For now we consider the lB� 0 case. Plugging Eq. (3) into

Green’s formula produces

/ðrÞ ¼ � I

Gd
½Gðr; rþÞ �Gðr; r�Þ� þ

IDADGd

G2
d

ð
X

Gðr; r0Þr0dðr0 � r0Þ � ½r0Gðr0; rþÞ � r0Gðr0; r�Þ�dX0

þ IDADGh

G2
d

ez �
ð
X

Gðr; r0Þr0dðr0 � r0Þ � ½r0Gðr0; rþÞ � r0Gðr0; r�Þ�dX0

¼ � I

Gd
½Gðr; rþÞ �Gðr; r�Þ� �

IDADGd

G2
d

r0Gðr; r0Þjr0¼r0
� ½rGðr; rþÞ � rGðr; r�Þ�jr¼r0

� IDADGh

G2
d

ez � r0Gðr; r0Þjr0¼r0
� ½rGðr; rþÞ � rGðr; r�Þ�jr¼r0

:

If we measure the voltage across the voltage probes, ~rþ and ~r�, which are also the current probes for the reciprocal configura-

tion, ~Ri, we find that the perturbed resistance, Ri þ DRi due to a point perturbation at r0 is

Ri;m þ DRi;m ¼
/ð~rþÞ � /ð~r�Þ

I

DRi;m ¼
DADGd

G2
d

½rGðr; ~rþÞ � rGðr; ~r�Þ�jr¼r0
� ½rGðr; rþÞ � rGðr; r�Þ�jr¼r0

þDADGh

G2
d

½rGðr; ~rþÞ � rGðr; ~r�Þ�jr¼r0
� ½rGðr; rþÞ � rGðr; r�Þ�jr¼r0

� ez;

where we have used the relation rGðr0; rÞ ¼ �rGðr; r0Þ,
etc. So, in the small-perturbation, B ¼ 0 limit, the resistive

weighting function is simply

fiðrÞ
S

Ri;m

RS;L

)
¼ aiA

@2Ri;m

@RS;L@A
¼ aiAFiðrÞ; (4a)

where we define

FiðrÞ � ½rGðr;rþÞ�rGðr;r�Þ� � ½rGðr;~rþÞ�rGðr;~r�Þ�:

Now, as long as the expected value of Ri is not equal to zero,

that is, as long as ai is defined, we can normalize this expres-

sion in the following form:

163710-4 Koon et al. J. Appl. Phys. 114, 163710 (2013)
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fiðrÞ
S

Ri;m

RS;L

)
¼ A

Fið
FidX0

¼ A
JS;i � ~JS;ið

JS;i � ~JS;idX0
¼ A

Ei � ~Eið
Ei � ~EidX0

;

(4b)

in the limit Gh=Gd � 1, where ~JS and ~Ei represent the sheet

current density and electric field at a point r for the recipro-

cal configuration ~Ri and where we have used the normaliza-

tion to eliminate ai. Similarly, the Hall weighting function is

giðrÞ
S

Ri;m

RHS;L

)
¼ A

@2Ri;m

@RHS;L@A
¼ A

RS

@2Ri;m

@ðGh=GdÞ@A
¼ AGiðrÞ; (5a)

where we define

GiðrÞ ¼ ½rGðr; rþÞ � rGðr; r�Þ�
� ½rGðr; ~rþÞ � rGðr; ~r�Þ� � ez:

This expression is also easy to normalize provided that the

configuration Ri is a Hall configuration for a van der Pauw

geometry, that is, that its B-field-dependent component

equals the Hall sheet resistance, RHS

giðrÞ

S
Ri;m

RHS;L

)
¼ AGið

GidX0
¼ AðJS;i� ~JS;iÞ � ezð
ðJS;i� ~JS;iÞ � ezdX0

¼ AðEi� ~EiÞ � ezð
ðEi� ~EiÞ � ezdX0

ðspecial case of van der Pauw Hall configurationÞ:
(5b)

The normalizations of Eqs. (4b) and (5b) simplify the task of

solving for these weighting functions for arbitrary or nonsym-

metric geometries. All that is required to calculate the sensitiv-

ity functions is to solve two Laplace equation boundary value

problems: once for the configuration of interest and once for

its reciprocal configuration. If these two problems are solved

numerically on say an N � N grid with a numerical technique

that converges with order N, this is much faster than solving a

similar Laplacian for every point on the grid for which we

wish to know the sensitivity—a boundary value problem in

which we tweak the conductivity at that point—with a time of

order N3 vs N5. It also removes the question of how strong a

perturbation is needed in the calculation to avoid noise prob-

lems on the one hand and nonlinear effects on the other.

However, we can calculate the sensitivities not only to

local sheet resistance and sheet Hall resistance, but to local

variations in fundamental materials properties, such as the

sheet carrier concentration and the mobility. To compare the

various materials sensitivities in this weak-perturbation,

small-field limit, we first observe that

S
Ri;m

t ¼ lim
Dt=t!0

ðDRi;m=Ri;mÞ
ðDA=AÞðDt=tÞ ¼ S

Ri;m

Gd

@Gd

@t

t

Gd
þ SRi

Gh

@Gh

@t

t

Gh
;

from which we obtain

S
Ri;m

NS
¼ aiAð�Fi þ lBGiÞ

SRi;m
l ¼ aiAð�Fi þ 2lBGiÞ

S
Ri;m

B ¼ aiAlBðGi þ 2lBFiÞ;

(6)

in the limit of Dt=t� 1, lB� 1. We must be cautious in

applying Eq. (6) because the quantities Fi and Gi themselves

have nonzero B-field dependence. The problem of nonzero

magnetic fields will be considered in another article.29

While we have derived Eqs. (4) and (5) for the case of a

conducting plane of infinite area, the equations appear to be

of general validity for all simply connected specimens, as

calculating the functions on the right-hand side and compar-

ing them to previously calculated (and experimentally meas-

ured21,22) weighting functions for a both circular and square

vdP18–20 and both linear and square 4PP18,24,25 geometries

confirms. We have included two of these cases, a square vdP

arrangement and both a linear and square 4PP array on an in-

finite conducting plane, in Figs. 3 through 5.

In Fig. 3 we have calculated the weighting function

f1 ¼ S
R1;m

S;L ¼ f3 for a single-configuration measurement, the

“dual” weighting function ðf1 þ f2Þ=2, and the Hall weight-

ing function, g5 ¼ g6 by numerically solving for the electric

potential on a 101� 101 grid using a finite difference

approach on a Microsoft Excel spreadsheet incorporating Eq.

(4) for a square vdP specimen with electrodes at the corners.

The values at the center of each figure are 3.2114, 3.2114,

and 1.4365, vs. the values of 3.1573, 3.1573, and 1.3932,

respectively, calculated in Appendix A, with discrepancies

arising from truncation of the infinite series expression for

the electric potential. Color contours for all weighting func-

tions are spaced 0.2 apart along the z-axis.

A. Specific exact expressions

While the electric potential of the square vdP problem

in Fig. 3 cannot be expressed in simple, closed form, there

FIG. 3. Weighting functions calculated from Eqs. (4) and (5) for a square

vdP specimen with infinitesimal electrodes at its corners (inset).

(a) Resistivity single configuration: f1 ¼ S
R1;m

RS;L
; (b) resistivity dual configura-

tion: ðf1 þ f2Þ=2; (c) Hall effect: g5. Insets show the corresponding electrode

arrangement, with colored pads denoting current probes and white pads

denoting voltage probes.
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are geometries for which Eqs. (4) and (5) can be expressed

in closed algebraic form. This is possible for at least two

common vdP geometries—the semi-infinite conducting

plane and the circular disc—as well as for all 4PP geometries

in the limit of an infinite or semi-infinite conducting plane.

For a vdP circular disc of radius a for which configura-

tion Ri is defined by current probes located at ðr; hÞ ¼ ða; pÞ
and ða; p=2Þ and voltage probes at ða; 0Þ and ða; �p=2Þ

f1 ¼
2a4

ln 2
� ðr

2 � a2Þ2 � 2a2r2 sin 2h
r8 � 2a4r4 cos 4hþ a8

fdual ¼
2a4

ln 2
� ðr2 � a2Þ2

r8 � 2a4r4 cos 4hþ a8

g5 ¼
4a4

p
� a4 � r4

r8 � 2a4r4 cos 4hþ a8
;

vdP circular disc:

(7)

Cartestian-coordinate versions of this and the following two

equations are given in Appendix B. For the general case of

four electrodes in an infinite plane

S
Ri;m

RS;L
¼ p4

½ðx� x1Þjr� r4j2 � ðx� x4Þjr� r1j2� � ½ðx� x2Þjr� r3j2 � ðx� x3Þjr� r2j2�
þ½ðy� y1Þjr� r4j2 � ðy� y4Þjr� r1j2� � ½ðy� y2Þjr� r3j2 � ðy� y3Þjr� r2j2�

( )

2pjr� r1j2jr� r2j2jr� r3j2jr� r4j2lnf½jr3 � r1jjr4 � r2j�=½jr2 � r1jjr4 � r3j�g
;

which reduces to the following for a linear 4PP array of pitch p centered along the x-axis:

S
RA;m

RS;L
¼ 3 p4

2p ln 4
�
r4 � 5

2
p2r2 cos 2hþ 9

16
p4

Dðr; p; hÞ ;

S
RB;m

RS;L
¼ 2 p4

p ln 3
�
r4 � 5

2
p2r2 cos2hþ 1

2
p2r2 sin2 hþ 9

16
p4

Dðr; p; hÞ ;

S
RC;m

RS;L
¼ �p4

2p ln
4

3

�
r4 � 5

2
p2r2 cos2 h� 11

2
p2r2 sin2 hþ 9

16
p4

Dðr; p; hÞ ;

ðSRS;m

RS;L
Þdual ¼

12 p4

pð4 ln 4� 3 ln 3Þ �
p2r2 sin2 h
Dðr; p; hÞ ;

where Dðr; p; hÞ ¼ r4 � 9

2
p2r2 cos 2hþ 81

16
p4

� �
r4 � 1

2
p2r2 cos 2hþ 1

16
p4

� �
linear 4PP array on infinite conducting plane;

(8)

with aA ¼ p=ln 2, aB ¼ 2p=ln 3, and aC ¼ 2p=ln 4
3

(Table I) for the functions of Eq. (8), in excellent agreement with the results

of Eqs. (4) and (5) calculated from the finite-difference method (Fig. 4) and those previously published elsewhere.18,24,25

FIG. 4. Sensitivities calculated exactly from Eq. (8), or by solving Eq. (4)

for a linear 4PP array on an infinite plane. (a) Resistivity single configura-

tion, SRA
RS;L

, (b) resistivity single configuration, SRB
RS;L

, (c) resistivity single con-

figuration SRC

RS;L
. Insets show the corresponding electrode arrangement on the

infinite plane, with colored pads denoting current probes and white pads

denoting voltage probes. Singularities at the electrodes have been truncated

in the graph.

FIG. 5. Sensitivities calculated from Eq. (9), or by solving Eqs. (4) and (5)

exactly for a perfectly symmetric square 4PP array with pitch p ¼ 1 on an in-

finite disc. (a) Resistivity: single configuration, S
R1;m

RS;L
, as defined in Fig. 1; (b)

resistivity: dual configuration, ðSR1;m

RS;L
þ S

R2;m

RS;L
Þ=2, assuming perfect symmetry,

R1 ¼ R2. Insets show the corresponding electrode arrangement, with colored

pads denoting current probes and white pads denoting voltage probes.
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In Fig. 4 we calculated sensitivities of 4PP resistive

measurements for the infinite conducting plane for linear

4PP arrays (Fig. 4). The values calculated from Eq. (8)

match the published numerical results at the center in 4PP

array in (a) through (c), with 0.6123, 1.0302, and �0.9835,

respectively, agreeing to at least 4 decimal places in each

case. Color contours for all weighting functions are spaced

0.2 apart along the z-axis for (a) through (c).

For the square 4PP array with electrodes placed at

ðr; hÞ ¼ ðp=
ffiffiffi
2
p

; 6p=4Þ and ðp=
ffiffiffi
2
p

; 63p=4Þ,

S
RA;m

RS;L
¼ p4

4
�

r4 � 2p2r2 cos2 hþ p4

4

r8 þ 1

2
p4r4 cos 4hþ 1

16
p8

;

S
RC;m

RS;L
¼ p4

4
�

r4 � 2p2r2 sin2 hþ p4

4

r8 þ 1

2
p4r4 cos 4hþ 1

16
p8

;

ðSRS;m

RS;L
Þdual ¼

p4

4
�

r2 � p2

2

� �2

r8 þ 1

2
p4r4 cos 4hþ 1

16
p8

square 4PP array on infinite conducting plane;

(9)

the first and last of which we plot in Fig. 5.

The value at the center of both Figs. 5(a) and 5(b) is 1,

regardless of p, and the function integrates over area to p2.

Singularities at the electrodes have been truncated in graph

(a). Color contours for all weighting functions are spaced 0.2

apart along the z-axis. The value of both functions at the cen-

ter of the array is 1, regardless of pitch.

B. Experimental consequences

Ideally, these weighting functions for charge transport

measurements should be nonnegative functions, unlike the

single-configuration resistive weighting function for Figs.

4(a)–4(c) and 5(a) because, in theory, a function for which

fi < 0 or gi < 0 in some regions of the specimen could lead

to charge transport measurements that lie outside the range

of values occurring within the specimen itself. This effect

has apparently already been observed for n-type ZnO films

in which the Hall signal can have the wrong sign, leading to

a misassignment of charge transport polarity.7,8 Ohgaki

et al. prove that this can occur when there is an internal hole

in the specimen, if the electrodes are placed close to that

hole rather than at the outer edges of the specimen by

numerically solving the perturbed boundary value problem.7

Bierwagen et al. show numerically that both radial inhomo-

geneities and edge inhomogeneities can also produce this

effect if the carrier density is increasing toward the edges of

the specimen.8 All of these pathological cases require that

the electrodes be located well inside the boundaries of the

specimen, a fundamental violation of the basic rules for the

vdP technique.1,2

Fig. 6 shows the Hall weighting function for a square

specimen with a square internal hole, as suggested by Ohgaki.

If the contacts are located at the corners of the specimen, the

weighting function is positive throughout, and the measured

Hall signal will have the right polarity (Fig. 6(a)). However, if

the contacts are not at the corners, singularities develop and,

as the electrodes approach the inner hole, the magnitude of

the negative contribution to
Ð
Xg5dX is greater than the posi-

tive contribution. In that case, even a uniform specimen

returns the wrong polarity of Hall signal (Fig. 6(b)).

We have also calculated the Hall weighting function, g5

in Fig. 7 for a square specimen with electrodes located far

inside the boundaries of the specimen both for the homoge-

neous case and for the case in which the carrier density

increases quadratically with distance from the center. This

inhomogeneity in NS does two things: first, it changes the

shape of g5 ¼ SR5

RHS;L
—the magnitude of the negative contri-

bution to
Ð
Xg5dX is 99% of the magnitude of the positive

contribution for the inhomogeneous case shown in Fig. 7(b)

vs. 70% for the homogeneous case (Fig. 7(a))—and second it

FIG. 6. Hall weighting function, g5, for square specimen with square interior

hole (1/3 the lateral size of the specimen) in the middle, as in Refs. 5 and 6,

with electrodes at the corners (a) and 9/10 of the way in from the corners to-

ward the interior hole (b). The function is positive throughout the specimen

in (a), and its average value is negative in (b) so that Hall measurements on

a uniform, n-type ZnO film will yield opposite polarity in the two cases.

Color contours for (a) are spaced 0.2 apart along the z-axis. The function in

(b) is unnormalized. Insets show the corresponding electrode arrangement,

with colored pads denoting current probes and white pads denoting voltage

probes.

FIG. 7. The Hall weighting function, g5, is shown for a square specimen of

side s with a distance 0:2s between adjacent electrodes. (a) For specimen of

homogeneous carrier density and (b) for specimen in which the density

increases radially to 100 times its central value at the corners. The magni-

tude of the negative contribution to
Ð
Xg5dX is 99% of the positive contribu-

tion for the inhomogeneous case shown in (b) vs 70% for the homogeneous

case (a). Radial inhomogeneities in carrier density are shown in Ref. 6 to

produce the wrong polarity of Hall signal in this geometry and thus to lead

to misinterpretation of carrier type. Both functions are unnormalized. Insets

show the corresponding electrode arrangement, with colored pads denoting

current probes and white pads denoting voltage probes.
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causes the magnitude of the integral
Ð

Ghg5dX
¼
Ð

nel2g5dX (in the B ¼ 0 limit) to be larger for regions of

negative g5 than for regions of positive g5, thus producing a

negative Hall signal.

V. CONCLUSIONS

Sensitivity [weighting] functions provide a powerful,

visual, and intuitive tool for interpreting the role of macro-

scopic inhomogeneities on the charge transport measure-

ment process, allowing one both to quantify the uncertainty

in charge transport quantities due to inhomogeneities and to

predict when there is a danger that the sort of catastrophic

failure already documented for some published ZnO Hall

measurements might occur. We have found a direct expres-

sion which makes the process of graphing these sensitivity

functions easier for researchers in the laboratory, turning a

problem of order N5 for a N � N grid approximation of any

arbitrary specimen geometry into a problem of order N3—

order N2 for a handful of problems that can be solved ana-

lytically—allowing the researcher either to greatly reduce

the calculation time or to increase the resolution of the

function, or both. Further, we have shown that such sensi-

tivity analysis provides a powerful, visual, and intuitive

tool for understanding for example how Hall signals can

have the wrong sign and for avoiding such pathological

cases.
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APPENDIX A: THE VAN DER PAUW SQUARE AND
RELATED GEOMETRIES

A unit circle, z, on the complex plane can be mapped

onto the upper half-plane, u, and then onto a unit square, v,

in the complex plane by the following sequence of conformal

maps, as illustrated in Fig. 8

u ¼ þi
1þ z

1� z
v ¼ 1

k

ðu
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� t2Þ

p ; (A1)

where

k ¼
ð1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� t2Þ

p ¼
ð1
1

2dtffiffiffiffiffiffiffiffiffiffiffiffi
t4 � 1
p ¼ 2

ffiffiffi
p
p Cð5=4Þ

Cð3=4Þ

� 2:62205755:

If we place electrodes symmetrically about the edge of

the unit circle at z ¼ �1, þi, þ1, and �i, then these are

plotted onto u ¼ 0, �1, 1, and þ1 on the upper half-

plane and v ¼ 0, þi, þ1þ i, and þ1, respectively, on the

unit square.

Quantities that are conformally invariant under map-

ping from the circular disc to the square include not only

the electric potential for a boundary-value problem on the

unit circle, but also the effect of a point perturbation in the

conductance within an infinitesimal region of the material,

and so both

DA

A
fi and

DA

A
gi

are conformally invariant. The weighting functions on the

square can thus be written as

fiðvÞ ¼
k2

2p
j1� z4jfiðzÞ and giðvÞ ¼

k2

2p
j1� z4jgiðzÞ;

since

du ¼ 2idz

ð1� zÞ2
and dv ¼ 1

k

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1� u2Þ

p ¼
ffiffiffiffi
2i
p

k

dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z4
p :

While in principle we could use Eq. (A1) to calculate the

weighting functions for the square from the analytic expres-

sions on the circle, it is difficult in practice to map an arbi-

trary point in the interior of the circle onto the square. There

are a few points, however, that we can easily map. The cen-

ter of the circle, for example, maps to the center of the unit

square, and so,

f1ðvÞ ¼
k2

p ln 2
¼ 3:157250980;

g5ðvÞ ¼
2k2

p2
¼ 1:393203930 ðcenter of squareÞ;

both of these values agreeing very well with previously cal-

culated values.18,19 We can also map the diagonals (both

y ¼ 0 and x ¼ 0) of the circular disc for the Hall weighting

function

g5ðzÞ ¼ 4=pð1� x4Þ for y ¼ 0

4=pð1� y4Þ for x ¼ 0

� �
;FIG. 8. Conformal mapping of a unit circle onto a unit square in Eq. (A1).

The transformation z! v can be written in the form of an elliptical integral.
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g5ðvÞ ¼
2k2

p2
¼ 1:393203930 for both ðdiagonals of squareÞ;

again in excellent agreement with calculated values. Finally,

we consider the edges (z ¼ ei/) and the horizontal mirror

axis (y ¼ �x) of the circle

f1ðzÞ ¼

�1

ln 2 � sin 2/
for z ¼ ei/

2

ð1þ 4x4Þln 2
for y ¼ �x

8>>><
>>>:

9>>>=
>>>;
;

f1ðvÞ ¼

k2

p ln 2
sgnðsin 2/Þ ¼ 63:157250980

k2

p ln 2
¼ 3:157250980

8>>><
>>>:

9>>>=
>>>;
;

edges;

mirror axis

of square

0
B@

1
CA;

also in excellent agreement with previous calculated values.

APPENDIX B: EXACT FORMS, CARTESIAN COORDINATES

Equations (7)–(9) for the sensitivities of a circular vdP disc and for both linear and square 4PPs can be transformed into

Cartesian coordinates. We include them below since those coordinates may sometimes prove more useful than polar

f1 ¼
2a4

ln 2

ðx2 þ y2 � a2Þ2 � 4a2xy

½ðx� aÞ2 þ y2�½ðxþ aÞ2 þ y2�½x2 þ ðy� aÞ2�½x2 þ ðyþ aÞ2�
;

1

2
ðf1 þ f2Þ ¼

2a4

ln 2

ðx2 þ y2 � a2Þ2

½ðx� aÞ2 þ y2�½ðxþ aÞ2 þ y2�½x2 þ ðy� aÞ2�½x2 þ ðyþ aÞ2�
;

g5 ¼
4a4

p
a4 � ðx2 þ y2Þ2

½ðx� aÞ2 þ y2�½ðxþ aÞ2 þ y2�½x2 þ ðy� aÞ2�½x2 þ ðyþ aÞ2�
Eq: 7(a) ðcircular vdP discÞ;

SRA
RS;L
¼ 3p4

2p ln4

ðx2þ y2Þ2þ 9

16
p4�5

2
p2ðx2�y2Þ

xþ3

2
p

� �2

þ y2

" #
xþ1

2
p

� �2

þy2

" #
x�1

2
p

� �2

þy2

" #
x�3

2
p

� �2

þy2

" #

SRB
RS;L
¼ 2p4

p ln3

ðx2þy2Þ2þ 9

16
p4�5

2
p2x2þ1

2
p2y2

xþ3

2
p

� �2

þy2

" #
xþ1

2
p

� �2

þ y2

" #
x�1

2
p

� �2

þ y2

" #
x�3

2
p

� �2

þy2

" #

SRC

RS;L
¼ �p4

2p ln
4

3

ðx2þy2Þ2þ 9

16
p4�5

2
p2x2�11

2
p2y2

xþ3

2
p

� �2

þ y2

" #
xþ1

2
p

� �2

þy2

" #
x�1

2
p

� �2

þy2

" #
x�3

2
p

� �2

þy2

" #

ðSRS

RS;L
Þdual¼

12p6y2=p=ð4ln4�3ln3Þ

xþ3

2
p

� �2

þ y2

" #
xþ1

2
p

� �2

þy2

" #
x�1

2
p

� �2

þy2

" #
x�3

2
p

� �2

þy2

" # Eq:8(a) ðlinear4PPoninfiniteplaneÞ;

SRA
RS;L
¼ p4

4

ðx2 þ y2Þ2 � 2p2x2 þ p4

4

x� p

2

	 
2

þ y� p

2

	 
2
� �

x� p

2

	 
2

þ yþ p

2

	 
2
� �

xþ p

2

	 
2

þ y� p

2

	 
2
� �

xþ p

2

	 
2

þ yþ p

2

	 
2
� � ;

SRB
RS;L
¼ p4

4

ðx2 þ y2Þ2 � 2p2y2 þ p4

4

x� p

2

	 
2

þ y� p

2

	 
2
� �

x� p

2

	 
2

þ yþ p

2

	 
2
� �

xþ p

2

	 
2

þ y� p

2

	 
2
� �

xþ p

2

	 
2

þ yþ p

2

	 
2
� � ;

ðSRS

RS;L
Þdual ¼

p4

4

x2 þ y2 � p2

2

� �2

x� p

2

	 
2

þ y� p

2

	 
2
� �

x� p

2

	 
2

þ yþ p

2

	 
2
� �

xþ p

2

	 
2

þ y� p

2

	 
2
� �

xþ p

2

	 
2

þ yþ p

2

	 
2
� �

Eq: 9 að Þ ðsquare 4PP on infinite planeÞ:
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