92 research outputs found

    Two-component approach for thermodynamic properties in diluted magnetic semiconductors

    Full text link
    We examine the feasibility of a simple description of Mn ions in III-V diluted magnetic semiconductors (DMSs) in terms of two species (components), motivated by the expectation that the Mn-hole exchange couplings are widely distributed, expecially for low Mn concentrations. We find, using distributions indicated by recent numerical mean field studies, that the thermodynamic properties (magnetization, susceptibility, and specific heat) cannot be fit by a single coupling as in a homogeneous model, but can be fit well by a two-component model with a temperature dependent number of ``strongly'' and ``weakly'' coupled spins. This suggests that a two-component description may be a minimal model for the interpretation of experimental measurements of thermodynamic quantities in III-V DMS systems.Comment: 10 pages, 9 figures, 1 new figure, substantial revision

    RIGHT-FIELD SUBMILLIMETER MAGNETO-SPECTROSCOPY ON Hg(Fe)Se

    Get PDF
    Magnetooptical phenomena in the zero-gap semimagnetic semiconductor Hg(Fe)Se are studied by various techniques in pulsed magnetic fields up to 150 Τ. Microscopical parameters are estimated in combination with results obtained from transport and magnetization measurements

    Clinical and economic impact of HeartLogic (TM) compared with standard care in heart failure patients

    Get PDF
    Aims The implantable cardiac defibrillator/cardiac resynchronization therapy with defibrillator-based HeartLogic (TM) algorithm has recently been developed for early detection of impending decompensation in heart failure (HF) patients; but whether this novel algorithm can reduce HF hospitalizations has not been evaluated. We investigated if activation of the HeartLogic algorithm reduces the number of hospital admissions for decompensated HF in a 1 year post-activation period as compared with a 1 year pre-activation period.Methods and results Heart failure patients with an implantable cardiac defibrillator/cardiac resynchronization therapy with defibrillator with the ability to activate HeartLogic and willingness to have remote device monitoring were included in this multicentre non-blinded single-arm trial with historical comparison. After a HeartLogic alert, the presence of HF symptoms and signs was evaluated. If there were two or more symptoms and signs apart from the HeartLogic alert, lifestyle advices were given and/or medication was adjusted. After activation of the algorithm, patients were followed for 1 year. HF events occurring in the 1 year prior to activation and in the 1 year after activation were compared. Of the 74 eligible patients (67.2 +/- 10.3 years, 84% male), 68 patients completed the 1 year follow-up period. The total number of HF hospitalizations reduced from 27 in the pre-activation period to 7 in the post-activation period (P = 0.003). The number of patients hospitalized for HF declined from 21 to 7 (P = 0.005), and the hospitalization length of stay diminished from average 16 to 7 days (P = 0.079). Subgroup analysis showed similar results (P = 0.888) for patients receiving cardiac resynchronization therapy during the pre-activation period or not receiving cardiac resynchronization therapy, meaning that the effect of hospitalizations cannot solely be attributed to reverse remodelling. Subanalysis of a single-centre Belgian subpopulation showed important reductions in overall health economic costs (P = 0.025).Conclusion Activation of the HeartLogic algorithm enables remote monitoring of HF patients, coincides with a significant reduction in hospitalizations for decompensated HF, and results in health economic benefits.Cardiolog

    Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells

    Get PDF
    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities of SLRP in response to CSC enrichment, simultaneously acquiring TMZ resistance, cellular heterogeneity, and a quiescent phenotype, suggesting a novel pivotal role for SLRP in drug resistance and cell plasticity of CSC-like, allowing cell survival and ECM/niche modulation potential.This study was supported by Fundació la Marató TV3, Project n° 111431

    T. brucei Infection Reduces B Lymphopoiesis in Bone Marrow and Truncates Compensatory Splenic Lymphopoiesis through Transitional B-Cell Apoptosis

    Get PDF
    African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF
    • …
    corecore