94 research outputs found

    Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire

    Get PDF
    Background: Pythium ultimum (P. ultimum) is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. Results: The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions although surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report in a genome outside the metazoans. Conclusions: Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae

    Occurrence and Distribution of \u3ci\u3eTriticum mosaic virus\u3c/i\u3e in the Central Great Plains

    Get PDF
    Wheat curl mite (WCM)-transmitted viruses—namely, Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and the High Plains virus (HPV)—are three of the wheat-infecting viruses in the central Great Plains of the United States. TriMV is newly discovered and its prevalence and incidence are largely unknown. Field surveys were carried out in Colorado, Kansas, Nebraska, and South Dakota in spring and fall 2010 and 2011 to determine TriMV prevalence and incidence and the frequency of TriMV co-infection with WSMV or HPV in winter wheat. WSMV was the most prevalent and was detected in 83% of 185 season–counties (= s-counties), 73% of 420 season– fields (= s-fields), and 35% of 12,973 samples. TriMV was detected in 32, 6, and 6% of s-counties, s-fields, and samples, respectively. HPV was detected in 34, 15, and 4% of s-counties, s-fields, and samples, respectively. TriMV was detected in all four states. In all, 91% of TriMV-positive samples were co-infected with WSMV, whereas WSMV and HPV were mainly detected as single infections. The results from this study indicate that TriMV occurs in winter wheat predominantly as a double infection with WSMV, which will complicate breeding for resistance to WCM-transmitted viruses

    Condition of Green Ash, Incidence of Ash Yellows Phytoplasmas, and Their Association in the Great Plains and Rocky Mountain Regions of North America

    Get PDF
    About 50% of 1,057 green ash (Fraxinus pennsylvanica) systematically sampled in the Great Plains and Rocky Mountain regions had substantial dieback (\u3e10% of crown branches with dieback), and the average growth ring width during the last 20 years was 2.9 mm. The overall condition of the population was rated fair. Ash yellows phytoplasmas were identified at 102 of 106 sites throughout six U.S. states (North Dakota, South Dakota, Wyoming, Nebraska, Colorado, Kansas) and three Canadian provinces (Alberta, Saskatchewan, Manitoba). These phytoplasmas had not previously been known in Alberta, Saskatchewan, Manitoba, Wyoming, Colorado, or Kansas. Incidence of phytoplasmal detection ranged from 16% in Wyoming to 71% in South Dakota. Incidence varied in the range 41 to 67% across site types and crown dieback classes. Incidence was highest in rural plantings, in trees with the most crown dieback, and in larger diameter trees. No significant relationships were detected between presence of ash yellows phytoplasmas and radial growth rates of trees

    Evaluation of the Mechanical and Thermal Properties of Coffee Tree Wood Flour - Polypropylene Composites

    No full text
    Columbian coffee trees are subject to frequent replacement plantings due to disease and local climate changes, which makes them an ideal source of wood fibers for wood plastic composites (WPC). Composites of polypropylene (PP) consisting of 25% and 40% by weight of coffee wood flour (CF) and 0% or 5% by weight of maleated PP (MAPP) were produced by twin screw compounding and injection molding. Composites containing MAPP had significantly improved tensile and flexural properties compared to neat PP or composites without MAPP. Excellent mechanical properties were obtained with CF relative to conventional wood fillers. IZOD impact resistances of CF composites were significantly lower than neat PP although WPC containing MAPP were superior to WPC without MAPP. Bio-based fiber composites made by mixing CF in equal portions with other fiber sources were evaluated to determine the compatibility of using CF with other sources of filler materials. Soaking of tensile bars of the various CF blends in distilled water for 35 days may alter their mechanical properties and result in weight gain. Differential scanning calorimetry and thermogravimetric analysis were conducted on the neat PP and bio-composites to evaluate their thermal properties as they relate to potential degradation during conventional thermoplastic resin processing
    • 

    corecore