7 research outputs found

    Изменения ледника Чалаати (Грузинский Кавказ) с малого ледникового периода по данным космогенных изотопов (10Be) и дендрохронологии

    Get PDF
    Glacier variations over the past centuries are still poorly documented on the southern slope of the Greater Caucasus. In this paper, the change of Chalaati Glacier in the Georgian Caucasus from its maximum extent during the Little Ice Age has been studied. For the first time in the history of glaciological studies of the Georgian Caucasus, 10Be in situ Cosmic Ray Exposure (CRE) dating was applied. The age of moraines was determined by tree-ring analysis. Lichenometry was also used as a supplementary tool to determine the relative ages of glacial landforms. In addition, the large-scale topographical maps (1887, 1960) were used along with the satellite imagery – Corona, Landsat 5 TM, and Sentinel 2B. Repeated photographs were used to identify the glacier extent in the late XIX and early XX centuries. 10Be CRE ages from the oldest lateral moraine of the Chalaati Glacier suggest that the onset of the Little Ice Age occurred ~0.73±0.04 kyr ago (CE ~1250–1330), while the dendrochronology and lichenometry measurements show that the Chalaati Glacier reached its secondary maximum extent again about CE ~1810. From that time through 2018 the glacier area decreased from 14.9±1.5 km2 to 9.9±0.5 km2 (33.8±7.4% or ~0.16% yr−1), while its length retreated by ~2280 m. The retreat rate was uneven: it peaked between 1940 and 1971 (~22.9 m yr−1), while the rate was slowest in 1910– 1930 (~4.0 m yr−1). The terminus elevation rose from ~1620 m to ~1980 m above sea level in ~1810–2018.Для реконструкции колебаний ледника Чалаати в Грузии использовались космические снимки, старые карты, повторные фотографии, дендрохронология, лихенометрия и анализ космогенных изотопов. Максимальное наступание ледника в начале малого ледникового периода произошло в ~1250–1330 гг., второй максимум, когда ледник достиг почти такой же длины, датируется примерно 1810 г. С этого времени до 2018 г. площадь ледника уменьшилась с 14,9±1,5 до 9,9±0,5 км2 (33,8±7,4%, или ~0,16% год−1), а его длина сократилась на ~2280 м

    The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)

    No full text
    There have been numerous studies of glaciers in the Greater Caucasus, but none that have generated a modern glacier database across the whole mountain range. Here, we present an updated and expanded glacier inventory at three time periods (1960, 1986, 2014) covering the entire Greater Caucasus. Large-scale topographic maps and satellite imagery (Corona, Landsat 5, Landsat 8 and ASTER) were used to conduct a remote-sensing survey of glacier change, and the 30 m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM; 17 November 2011) was used to determine the aspect, slope and height distribution of glaciers. Glacier margins were mapped manually and reveal that in 1960 the mountains contained 2349 glaciers with a total glacier surface area of 1674.9 ± 70.4 km2. By 1986, glacier surface area had decreased to 1482.1 ± 64.4 km2 (2209 glaciers), and by 2014 to 1193.2 ± 54.0 km2 (2020 glaciers). This represents a 28.8 ± 4.4 % (481 ± 21.2 km2) or 0.53 % yr−1 reduction in total glacier surface area between 1960 and 2014 and an increase in the rate of area loss since 1986 (0.69 % yr−1) compared to 1960–1986 (0.44 % yr−1). Glacier mean size decreased from 0.70 km2 in 1960 to 0.66 km2 in 1986 and to 0.57 km2 in 2014. This new glacier inventory has been submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used as a basis data set for future studies

    Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery

    No full text
    Changes in the area and number of glaciers in the Georgian Caucasus Mountains were examined over the last century, by comparing recent Landsat and ASTER images (2014) with older topographical maps (1911, 1960) along with middle and high mountain meteorological stations data. Total glacier area decreased by 8.1 &pm; 1.8 % (0.2 &pm; 0.04 % yr<sup>−1</sup>) or by 49.9 &pm; 10.6 km<sup>2</sup> from 613.6 &pm; 9.8 km<sup>2</sup> to 563.7 &pm; 11.3 km<sup>2</sup> during 1911&ndash;1960, while the number of glaciers increased from 515 to 786. During 1960&ndash;2014, the total ice area decreased by 36.9 &pm; 2.2 % (0.7 &pm; 0.04 % yr<sup>−1</sup>) or by 207.9 &pm; 9.8 km<sup>2</sup> from 563.7 &pm; 11.3 km<sup>2</sup> to 355.8 &pm; 8.3 km<sup>2</sup>, while glacier numbers decreased from 786 to 637. In total, the area of Georgia glaciers reduced by 42.0 &pm; 2.0 % (0.4 &pm; 0.02 % yr<sup>−1</sup>) between 1911 and 2014. The eastern Caucasus section had the highest retreat rate of 67.3 &pm; 2.0 % (0.7 &pm; 0.02 % yr<sup>−1</sup>) over this period, while the central part of Georgian Caucasus had the lowest, 34.6 &pm; 1.8 % (0.3 &pm; 0.01 % yr<sup>−1</sup>), with the western Caucasus intermediate at 42.8 &pm; 2.7 % (0.4 ± 0.03 % yr<sup>−1</sup>)

    Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014

    Get PDF
    Knowledge of supra-glacial debris cover and its changes remain incomplete in the Greater Caucasus, in spite of recent glacier studies. Here we present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on Landsat and SPOT images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The accuracy of the results was assessed by using high-resolution Google Earth imagery and GPS data for selected glaciers. From 1986 to 2014, the total glacier area decreased from 691.5±29.0 to 590.0±25.8 km2 (15.8±4.1 %, or ∼0.52 % yr−1), while the clean-ice area reduced from 643.2±25.9 to 511.0±20.9 km2 (20.1±4.0 %, or ∼0.73 % yr−1). In contrast supra-glacial debris cover increased from 7.0±6.4 %, or 48.3±3.1 km2, in 1986 to 13.4±6.2 % (∼0.22 % yr−1), or 79.0±4.9 km2, in 2014. Debris-free glaciers exhibited higher area and length reductions than debris-covered glaciers. The distribution of the supra-glacial debris cover differs between the northern and southern and between the western, central and eastern Greater Caucasus. The observed increase in supra-glacial debris cover is significantly stronger on the northern slopes. Overall, we have observed up-glacier average migration of supra-glacial debris cover from about 3015 to 3130 m a.s.l. (metres above sea level) during the investigated period

    The retreat of mountain glaciers since the Little Ice Age: A spatially explicit database

    Get PDF
    Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8)
    corecore