8,964 research outputs found
Dynamics of the Lyman alpha and C IV emitting gas in 3C 273
In this paper we study the variability properties of the Lyman alpha and C IV
emission lines in 3C273 using archival IUE observations. Our data show for the
first time the existence of variability on time scales of several years. We
study the spatial distribution and the velocity field of the emitting gas by
performing detailed analyses on the line variability using correlations, 1D and
2D response functions, and principal component analysis. In both lines we find
evidence for two components, one which has the dynamic properties of gas in
Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and
one which is characterized by high, blue-shifted velocities at large lag. There
is no indication of the presence of optically thick emission medium neither in
the Lya, nor in the Civ response functions. The component characterized by
blue-shifted velocities, which is comparatively much stronger in Civ than in
Lya, is more or less compatible with being the result of gas falling towards
the central black hole with free-fall acceleration. We propose however that the
line emission at high, blue-shifted velocities is better explained in terms of
entrainment of gas clouds by the jet. This gas is therefore probably
collisionally excited as a result of heating due to the intense infrared
radiation from the jet, which would explain the strength of this component in
Civ relative to Lya. This phenomenon might be a signature of disk-jet
interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste
High-Fidelity Z-Measurement Error Correction of Optical Qubits
We demonstrate a quantum error correction scheme that protects against
accidental measurement, using an encoding where the logical state of a single
qubit is encoded into two physical qubits using a non-deterministic photonic
CNOT gate. For the single qubit input states |0>, |1>, |0>+|1>, |0>-|1>,
|0>+i|1>, and |0>-i|1> our encoder produces the appropriate 2-qubit encoded
state with an average fidelity of 0.88(3) and the single qubit decoded states
have an average fidelity of 0.93(5) with the original state. We are able to
decode the 2-qubit state (up to a bit flip) by performing a measurement on one
of the qubits in the logical basis; we find that the 64 1-qubit decoded states
arising from 16 real and imaginary single qubit superposition inputs have an
average fidelity of 0.96(3).Comment: 4 pages, 4 figures, comments welcom
Lens or Binary? Chandra Observations of the Wide Separation Broad Absorption Line Quasar Pair UM425
We have obtained a 110 ksec Chandra ACIS-S exposure of UM425, a pair of QSOs
at z=1.47 separated by 6.5 arcsec, which show remarkably similar emission and
broad absorption line (BAL) profiles in the optical/UV. Our 5000 count X-ray
spectrum of UM425A (the brighter component) is well-fit with a power law
(photon spectral index Gamma=2.0) partially covered by a hydrogen column of
3.8x10^22 cm^-2. The underlying power-law slope for this object and for other
recent samples of BALQSOs is typical of radio-quiet quasars, lending credence
to the hypothesis that BALs exist in every quasar. Assuming the same Gamma for
the much fainter image of UM425B, we detect an obscuring column 5 times larger.
We search for evidence of an appropriately large lensing mass in our Chandra
image and find weak diffuse emission near the quasar pair, with an X-ray flux
typical of a group of galaxies at redshift z ~ 0.6. From our analysis of
archival HST WFPC2 and NICMOS images, we find no evidence for a luminous
lensing galaxy, but note a 3-sigma excess of galaxies in the UM425 field with
plausible magnitudes for a z=0.6 galaxy group. However, the associated X-ray
emission does not imply sufficient mass to produce the observed image
splitting. The lens scenario thus requires a dark (high M/L ratio) lens, or a
fortuitous configuration of masses along the line of sight. UM425 may instead
be a close binary pair of BALQSOs, which would boost arguments that
interactions and mergers increase nuclear activity and outflows.Comment: 13 pages, 9 figures, Accepted for publication in the Astrophysical
Journa
Changing social contracts in climate-change adaptation
Risks from extreme weather events are mediated through
state, civil society and individual action
1
,
2
. We propose evolving
social contracts as a primary mechanism by which adaptation
to climate change proceeds. We use a natural experiment
of policy and social contexts of the UK and Ireland affected
by the same meteorological event and resultant flooding in
November 2009. We analyse data from policy documents and
from household surveys of 356 residents in western Ireland and
northwest England. We find significant differences between
perceptions of individual responsibility for protection across
the jurisdictions and between perceptions of future risk from
populations directly affected by flooding events. These explain
differences in stated willingness to take individual adaptive
actions when state support retrenches. We therefore show
that expectations for state protection are critical in mediating
impacts and promoting longer-term adaptation. We argue
that making social contracts explicit may smooth pathways to
effective and legitimate adaptation
A simple scheme for expanding photonic cluster states for quantum information
We show how an entangled cluster state encoded in the polarization of single
photons can be straightforwardly expanded by deterministically entangling
additional qubits encoded in the path degree of freedom of the constituent
photons. This can be achieved using a polarization--path controlled-phase gate.
We experimentally demonstrate a practical and stable realization of this
approach by using a Sagnac interferometer to entangle a path qubit and
polarization qubit on a single photon. We demonstrate precise control over
phase of the path qubit to change the measurement basis and experimentally
demonstrate properties of measurement-based quantum computing using a 2 photon,
3 qubit cluster state
Near-field interaction between domain walls in adjacent Permalloy nanowires
The magnetostatic interaction between two oppositely charged transverse
domain walls (DWs)in adjacent Permalloy nanowires is experimentally
demonstrated. The dependence of the pinning strength on wire separation is
investigated for distances between 13 and 125 nm, and depinning fields up to 93
Oe are measured. The results can be described fully by considering the
interaction between the full complex distribution of magnetic charge within
rigid, isolated DWs. This suggests the DW internal structure is not appreciably
disturbed by the pinning potential, and that they remain rigid although the
pinning strength is significant. This work demonstrates the possibility of
non-contact DW trapping without DW perturbation and full continuous flexibility
of the pinning potential type and strength. The consequence of the interaction
on DW based data storage schemes is evaluated.Comment: 4 pages, 4 figures, 1 page supplimentary material (supporting.ps
Fallback accretion on to a newborn magnetar : long GRBs with giant X-ray flares
Flares in the X-ray afterglow of gamma-ray bursts (GRBs) share more characteristics with the prompt emission than the afterglow, such as pulse profile and contained fluence. As a result, they are believed to originate from late-time activity of the central engine and can be used to constrain the overall energy budget. In this paper, we collect a sample of 19 long GRBs observed by Swift-XRT that contain giant flares in their X-ray afterglows. We fit this sample with a version of the magnetar propeller model, modified to include fallback accretion. This model has already successfully reproduced extended emission in short GRBs. Our best fits provide a reasonable morphological match to the light curves. However, 16 out of 19 of the fits require efficiencies for the propeller mechanism that approach 100%. The high efficiency parameters are a direct result of the high energy contained in the flares and the extreme duration of the dipole component, which forces either slow spin periods or low magnetic fields. We find that even with the inclusion of significant fallback accretion, in all but a few cases it is energetically challenging to produce prompt emission, afterglow and giant flares within the constraints of the rotational energy budget of a magnetar
Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind
RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts
have indicated that high velocity ejecta interact with a pre-existing red giant
wind, setting up shock systems analogous to those seen in Supernova Remnants.
However, in the previous outburst in 1985, X-ray observations did not commence
until 55 days after the initial explosion. Here we report on Swift observations
covering the first month of the 2006 outburst with the Burst Alert (BAT) and
X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25
keV band from t=0 to days. XRT observationsfrom 0.3-10 keV, started at
3.17 days after outburst. The rapidly evolving XRT spectra clearly show the
presence of both line and continuum emission which can be fitted by thermal
emission from hot gas whose characteristic temperature, overlying absorbing
column, , and resulting unabsorbed total flux decline monotonically
after the first few days. Derived shock velocities are in good agreement with
those found from observations at other wavelengths. Similarly, is in
accord with that expected from the red giant wind ahead of the forward shock.
We confirm the basic models of the 1985 outburst and conclude that standard
Phase I remnant evolution terminated by days and the remnant then
rapidly evolved to display behaviour characteristic of Phase III. Around t=26
days however, a new, luminous and highly variable soft X-ray source began to
appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap
How many trafficked people are there in Greater New Orleans? lessons in measurement
In an effort to develop a model for estimating prevalence in a city or region of the United States, this study employed Multiple Systems Estimation, a statistical approach that uses data on known cases collected from individual agencies to estimate the number not known, with the ultimate aim of estimating the prevalence of trafficking in a region. Utilizing de-identified data provided by local non-profits and law enforcement agencies, the researchers estimated the prevalence of trafficking in the New Orleans-Metairie metropolitan statistical area. This represents one of the first attempts to use Multiple Systems Estimation to quantify human trafficking in a United States context. The article provides an account of the impediments to and limitations of conducting such an estimate, given the definitional variance and political dynamics that are endemic to anti-trafficking efforts in the United States. The authors provide recommendations for data collection and prevalence analysis that could be applied in other cities or regions of the United States as well as in other similarly-resourced environments
Demonstration of a simple entangling optical gate and its use in Bell-state analysis
We demonstrate a new architecture for an optical entangling gate that is
significantly simpler than previous realisations, using partially-polarising
beamsplitters so that only a single optical mode-matching condition is
required. We demonstrate operation of a controlled-Z gate in both
continuous-wave and pulsed regimes of operation, fully characterising it in
each case using quantum process tomography. We also demonstrate a
fully-resolving, nondeterministic optical Bell-state analyser based on this
controlled-Z gate. This new architecture is ideally suited to guided optics
implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures
(low res), some other minor changes. Accepted for publication in PR
- …