1,449 research outputs found

    Computer programs for calculating potential flow in propulsion system inlets

    Get PDF
    Calculational procedure evolved in process of designing inlets. Douglas axisymmetric potential flow program called EOD calculates incompressible potential flow about arbitrary bodies. Program SCIRCL generates input for EOD from inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest and applied compressibility correction

    Tastes and technology in a two-country model of the business cycle: explaining international co-movements

    Get PDF
    The authors develop a two-country real business cycle model and examine its consistency with the behavior of relative prices, and the model's implications for economic aggregates at the sectoral level.Business cycles ; International finance

    Spaser Action, Loss Compensation, and Stability in Plasmonic Systems with Gain

    Full text link
    We demonstrate that the conditions of spaser generation and the full loss compensation in a resonant plasmonic-gain medium (metamaterial) are identical. Consequently, attempting the full compensation or overcompensation of losses by gain will lead to instability and a transition to a spaser state. This will limit (clamp) the inversion and lead to the limitation on the maximum loss compensation achievable. The criterion of the loss overcompensation, leading to the instability and spasing, is given in a analytical and universal (independent from system's geometry) form.Comment: 4 pages, 1 figur

    An efficient user-oriented method for calculating compressible flow in an about three-dimensional inlets

    Get PDF
    A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented

    Surface plasmon lifetime in metal nanoshells

    Full text link
    The lifetime of localized surface plasmon plays an important role in many aspects of plasmonics and its applications. In small metal nanostructures, the dominant mechanism restricting plasmon lifetime is size-dependent Landau damping. We performed quantum-mechanical calculations of Landau damping for the bright surface plasmon mode in a metal nanoshell. In contrast to the conventional model based on the electron surface scattering, we found that the damping rate decreases as the nanoshell thickness is reduced. The origin of this behavior is traced to the spatial distribution of plasmon local field inside the metal shell. We also found that, due to interference of electron scattering amplitudes from nanoshell's two metal surfaces, the damping rate exhibits pronounced quantum beats with changing shell thickness.Comment: 9 pages, 4 Figure

    Age and Structural Relations of Granites, Stony Creek Area, Connecticut

    Get PDF
    Guidebook for field trips in Connecticut and adjacent areas of New York and Rhode Island: New England Intercollegiate Geological Conference 77th annual meeting, Yale University, New Haven, Connecticut, October 4-6, 1985: Trip A

    Musical Haptic Wearables for Synchronisation of Visually-impaired Performers: a Co-design Approach

    Get PDF
    The emergence of new technologies is providing opportunities to develop novel solutions that facilitate the integration of visually-impaired people in different activities of our daily life, including collective music making. This paper presents a study conducted with visually-impaired music performers, which involved a participatory approach to the design of accessible technologies for musical communication in group playing. We report on three workshops that were conducted together with members of an established ensemble of solely visually-impaired musicians. The first workshop focused on the identification of the participants’ needs during the activity of playing in groups and how technology could satisfy such needs. The second and third workshops investigated, respectively, the activities of choir singing and instrument playing in ensemble, focusing on the key issue of synchronisation that was identified in the first workshop. The workshops involved prototypes of musical haptic wearables, which were co-designed and evaluated by the participants. Overall, results indicate that wireless tactile communication represents a promising avenue to cater effectively to the needs of visually-impaired performers

    SARS: Systematic review of treatment effects

    Get PDF
    Background The SARS outbreak of 2002-2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization ( WHO) expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research. Methods and Findings In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r), type I interferon (IFN), intravenous immunoglobulin ( IVIG), and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials ( CENTRAL) up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm. Conclusions Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage and timing, and to accrue data in real time during future outbreaks to monitor specific adverse effects and help inform treatment

    Spectroscopic studies of fractal aggregates of silver nanospheres undergoing local restructuring

    Get PDF
    We present an experimental spectroscopic study of large random colloidal aggregates of silver nanoparticles undergoing local restructuring. We argue that such well-known phenomena as strong fluctuation of local electromagnetic fields, appearance of "hot spots" and enhancement of nonlinear optical responses depend on the local structure on the scales of several nanosphere diameters, rather that the large-scale fractal geometry of the sample.Comment: 3.5 pages, submitted to J. Chem. Phy

    Statistics of level spacing of geometric resonances in random binary composites

    Full text link
    We study the statistics of level spacing of geometric resonances in the disordered binary networks. For a definite concentration pp within the interval [0.2,0.7][0.2,0.7], numerical calculations indicate that the unfolded level spacing distribution P(t)P(t) and level number variance Σ2(L)\Sigma^2(L) have the general features. It is also shown that the short-range fluctuation P(t)P(t) and long-range spectral correlation Σ2(L)\Sigma^2(L) lie between the profiles of the Poisson ensemble and Gaussion orthogonal ensemble (GOE). At the percolation threshold pcp_c, crossover behavior of functions P(t)P(t) and % \Sigma^2(L) is obtained, giving the finite size scaling of mean level spacing δ\delta and mean level number nn, which obey the scaling laws, % \delta=1.032 L ^{-1.952} and n=0.911L1.970n=0.911L^{1.970}.Comment: 11 pages, 7 figures,submitted to Phys. Rev.
    corecore