785 research outputs found

    Experience with a vectorized general circulation weather model on Star-100

    Get PDF
    A version of an atmospheric general circulation model was vectorized to run on a CDC STAR 100. The numerical model was coded and run in two different vector languages, CDC and LRLTRAN. A factor of 10 speed improvement over an IBM 360/95 was realized. Efficient use of the STAR machine required some redesigning of algorithms and logic. This precludes the application of vectorizing compilers on the original scalar code to achieve the same results. Vector languages permit a more natural and efficient formulation for such numerical codes

    Pair Plasma Dominance in the Parsec-Scale Relativistic Jet of 3C345

    Get PDF
    We investigate whether a pc-scale jet of 3C345 is dominated by a normal plasma or an electron-positron plasma. We present a general condition that a jet component becomes optically thick for synchrotron self-absorption, by extending the method originally developed by Reynolds et al. The general condition gives a lower limit of the electron number density, with the aid of the surface brightness condition, which enables us to compute the magnetic field density. Comparing the lower limit with another independent constraint for the electron density that is deduced from the kinetic luminosity, we can distinguish the matter content. We apply the procedure to the five components of 3C345 (C2, C3, C4, C5, and C7) of which angular diameters and radio fluxes at the peak frequencies were obtainable from literature. Evaluating the representative values of Doppler beaming factors by their equipartition values, we find that all the five components are likely dominated by an electron-positron plasma. The conclusion does not depend on the lower cutoff energy of the power-law distribution of radiating particles.Comment: 17 page

    Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and SiO2: study of adhesion and proliferation of osteoblast-like cells

    Get PDF
    The aim of this study consisted of investigating the influence of bioactive ceramic coatings of silicon substituted hydroxyapatite (Si-HA) over the behaviour of the human osteoblast-like cell (SaOS-2) line. Pulsed laser deposition (PLD) was the selected technique to deposit the coatings over titanium substrates. Diatomaceous earth and SiO2, together with commercial hydroxyapatite were respectively the silicon and HA sources used to produce the Si-HA coatings. HA coatings with 0% of silicon were used as control of the experiment. [...]info:eu-repo/semantics/publishedVersio

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    The protein import apparatus of chloroplasts

    Get PDF
    Routing of cytosolically synthesized precursor proteins into chloroplasts is a specific process which involves a multitude of soluble and membrane components. In this review we wil1 focus on early events of the translocation pathway of nuclear coded plastidic precursor proteins and compare import routes for polypeptide of the outer chloroplast envelope to that of internal chloroplast compartments. A number of proteins housed in the chloroplast envelopes have been implied to be involved in the translocation process, but so far a certain function has not been assigned to any of these proteins. The only exception could be an envelope localized hsc 70 homologue which could retain the import competence of a precursor protein in transit into the organelle

    Ponticulin plays a role in the positional stabilization of pseudopods

    Get PDF
    Ponticulin is a 17-kD glycoprotein that represents a major high affinity link between the plasma membrane and the cortical actin network of Dictyostelium. To assess the role of ponticulin in pseudopod extension and retraction, the motile behavior of two independently generated mutants lacking ponticulin was analyzed using computer-assisted two- and three-dimensional motion analysis systems. More than half of the lateral pseudopods formed off the substratum by ponticulin-minus cells slipped relative to the substratum during extension and retraction. In contrast, all pseudopods formed off the substratum by wild-type cells were positionally fixed in relation to the substratum. Ponticulin-minus cells also formed a greater proportion of both anterior and lateral pseudopods off the substratum and absorbed a greater proportion of lateral pseudopods into the uropod than wild-type cells. In a spatial gradient of cAMP, ponticulin-minus cells were less efficient in tracking the source of chemoattractant. Since ponticulin-minus cells extend and retract pseudopods with the same time course as wild-type cells, these behavioral defects in ponticulin-minus cells appear to be the consequence of pseudopod slippage. These results demonstrate that pseudopods formed off the substratum by wild-type cells are positionally fixed in relation to the substratum, that ponticulin is required for positional stabilization, and that the loss of ponticulin and the concomitant loss of positional stability of pseudopods correlate with a decrease in the efficiency of chemotaxis

    Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs

    Get PDF
    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.National Institutes of Health (U.S.) (GM17151)National Institutes of Health (U.S.) (GM22854)National Institutes of Health (U.S.) (ES017010)Singapore-MIT Alliance for Research and TechnologySingapore. National Research FoundationUnited States. Dept. of Energy (DE-FG36-08GO88055
    corecore