

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19820014034 2020-03-21T08:21:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42857159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(NASA-CR-166785) EXPERIENCE WITH A	 N82-71908
VICTORIZED GENERAL CIRCULATION WEATHER MODEL
ON STAR-'100 (GTE Information Systems, New
York, N. X.) 13 p HC A02/!!P A01 	 CSCL 09B	 Unclas

G3/60 1830 5

EXPERIENCE WITH A VECTORIZED GENERAL CIRCULATION

WEATHER MODEL ON STAR-100

David B. Soll
Nadim R. Habra
Gary L. Russell

GTE Informotion Systems
Goddard Institute for Space Sti

2880 Broadway
New York, N.Y. 10025

APR 1q8?.

RECEIVED

NASA STS FACIUTY
IMtI M 8M, t

Symposium on High Speed Computer and Algorithm
Organization (HICOM) 4PRiL 13 -)5-)1177

Adwpf tA to, Paf-55 117-7	 '

Abstract
j

F
A version of the Goddard institute for Space Studies

Atmospheric General Circulation Model was vectorized to run

on a CDC STAR-100. The numerical model was coded and run'in

two different vector languages, CDC STAR FORTRAN and LRLTRAN.

A factor of 10 speed improvement over an IBM 360/95 was realized.

Efficient use of the STAR machine required some re-designing of

algorithms and logic. This seems to preclude the application of

vectorizing compilers on the original scalar code to achieve the

same results. Although vector languages have not yet reached

maturity, they permit a more natural and efficient formulation

for such numerical codes.	 .

t	 ,

t

`INTRODUCTION

This paper presents the experience gained from converting

the Goddard Institute for Space Studies' (GISS) general circulation

weather model to run efficiently on a CDC STAR-100.- The conversion

effort involved both reorganization and redesign of the original

scalar code and the use of two vector languages: CDC STAR FORTRAN

and LRLTRAN. Included are timing comparisons and suggestions for

improving the usability of vector machines. The result of the con-

version of this model supports the suggestion by Stone (1) that sim-

ple, mechanical adaptations of serial algorithms are not necessarily

efficient on non-serial machines.

THE MODEL

The particular model used was a coarse grid version of the

nine layer GISS general circulation model (2) which in turn was

derived from the three layer weather model developed by Arakawa and

Mintz at U.C.L.A. This model performs,a time integration of the

"primitive equations" on a regular cylindrical grid with different

time steps for each of the three principal sections: dynamics

(winds, etc.), physics (transport equations), and radiation. The

coarse grid consists of 24 meridians each of which contains 16

..latitude points. Although the number of grid points is signifi-

cantly smaller than current production versions of the model, it

was felt that this representation was adequate to perform the con-

version economically. At GISS, the model is programmed in FORTRAN

IV and runs on an IBM 360/95 (a faster version of the 360/91).

CONVERSION TO THE STAR

There were several general considerations in the

conversion effort. Foremost wap that although the STAR vector

c

-1-

L'	 M
s	 R

pipeline is fast, scalar operations are not; consequently

sections of the program, had to be substantially reorganized

to reduce the ratio of scalar to vector code. In fact, many

scalar quantities were maintained in vector form, expanded over

the entire grid. Moreover, small arrays were expanded where

appropriate j:nto longer vectors to make full use of the streaming

efficiency of the vector hardware.

Software compatibility between the two vector languages

available dictated the use of singly-dimensioned arrays for all

vector operations. Furthermore, the storage order of all vec-

tors was altered so that longitudinal points for each latitude

were in contiguous storage. This was done primarily because the

dynamics section contains different computations for polar and

non-polar points. The result of this reorganiz4tion was that

the different computations could be performed on continuous as

opposed to scattered storage.

A second consideration was that several scalar algorithms

did not lend themselves to direct vectorization and had to be

rewritten. Circularity in the longitudinal computations is a

recurring problem in the dynamics section. This was resolved by

introducing two extra longitudinal points at •each latitude thus

creating an artificial wrap-around.

Another instance of algorithm redesign involved weighted

sums of products of quantities defined at neighboring gridpoints.

4

By reordering the computation, weighted sums of the individual

quantities could be computed and the products formed afterwards.

m`he latter method is more easily vectorizable than the former.

W2-

r

c

A simulation of the vectorized code was conducted in .

scalar FORTRAN to test the validity of the reorganized logic and

the modified algorithms.

LANGUAGES AND CODING TECHNIQUES ,

Since the numerical model is considered to be a research

tool, coding proceeded under the assumption that it should be

possible to easily make future changes while maintaining read-

ability. Consequently, it was decided that a high level language

would be used throughout.

Two STAR vector languages were selected: .(1) LRLTRAN,, (3)

written at the Lawrence Livermore Laboratory (LLL), University

of California, and (2) CDC's STAR FORTRAN, (4) a standard program

product. LRLTRAN is a programming language derived from FORTRAN 	 A

containing most of the features of FORTRAN IV and, in addition,

vector extensions,,

Both languages offer an explicit vector syntax which

permits the direct use of the STAR vector hardware. Even

though both languages contain a syntax for embedded machine

instructions (08INLINE), our readability constraint precluded

their use. This constraint was slightly relaxed when a:! oper-

ations were coded as explicit dyads. This technique was intro-

duced in order to prevent the.generation of unnecessary temporary

vectors by the compilers. Whereas LRLTRAN contains a more concise

notation for vector addressing, it requires that all vectors be

explicitly declared, singly-dimensioned, and have a starting

index of zero. This tends to create some confusion when

-3-

t

i	 EQUIVALENCE statements are used to map vectors onto other vectors

or multiply-dimensioned scalar arrays. STAR FORTRAN, on the

other hand, adheres more closely to ANSI FORTRAN standards. It

allows multiply-dimensioned arrays to be used as vectors without

an explicit declaration. Although STAR FORTRAN tends to be more

verbose, the overall flexibility offered by LRLTRAN introduces

additional "overhead" which naturally leads to longer execution

times.

STAR EXECUTION AND TIMINGS

The dynamics section was coded in both languages, whereas

the physics section was written only in STAR FORTRAN. This

paper discusses primarily those two sections, as vectorization of

the radiation section is not yet complete. Several runs of the

model were made at three separate installations. At LLL, the

LRLTRAN version of the dynamics was used, while the entire code

in STAR FORTRAN was run at CDC's Data Center in Arden Hills,

Minnesota. The timings for the original scalar code were

measured on the 360/95 at GISS. A comparison of the different

timings is presented in Tables I and II. The scalar code for

.the 360/95 was compiled under FORTRAN H Extended Plus, Optimiza- 	 n

tion Level 2, and used 64 bit floating point arithmetic. The

vector code was compiled under STAR FORTRAN version 2.0, cycle

115P without optimization.

As seen in Table I, the speed improvement for one call

to the dynamics sections is almost twice that obtained from one

call to the physics section. This is because the dynamics

algorithms lend themselves more readily to vectorization. A run

-4-

t
3

of the model for 14 simulated days yielded a net speedup factor

of 10.23. While this figure includes several sources of overhead

such as I/O and housekeeping, the effect of the slower physics

is offset by the fact that the dynamics routines are called six

tim„)s as often. A comparison of the dynamics written in LRLTRAN

(CHAT STAR version 98D) versus STAR FORTRAN (Table IL) confirms

that the increased flexibilit.y offered by LRLTRAN is achieved

with -some loss of performance.

OBSERVATIONS AND RECOMMENDATIONS

As a result of our experiences, several observations can

be made. Vector codes generally require more memory than their

scalar counterparts, primarily because intermediate quantities

are now vectors rather than scalars. Since vector machines offer

greater speeds, solving larger problems and increasing the

resolution of current problems become feasible. It appears,

therefore, that large main storage configurations are desirable,

if not necessary. Experience with a simirar model on ILLIAC

IV (5) confirms that the performance potential of a'fast machine

may not be fully realized when the user must-manage his own

peripheral storage as an extension of main storage. This

problem is solved on the STAR-100 by the use of a virtual memory

operating system and peripheral stations (6) which perform most

of the detailed input/output-related computing functions. The

combination of large main memory and an'efficient virtual

operating system, then, seems to be the best way to utilize a

fast parallel or vector machine.

-5-

It

f
r

It is critical that the underlying input/output control

software handles the user I/O requeste specif ed in higher level

language statements as efficiently as it handles system I/O

requests. In this respect and in spite of the available I/O

facilities, unformatted FORTRAN I/O.for this model on the STAR

wac Found to be a factor of 3.5 times slower than on the 350/95.

Not only are machine/systems improvements necessary, but

vector languages and compilers are also underdeveloped. As

previously mentioned, both LRLTRAN and STAR FORTRAN suffer from

a rigidity of notation which tends to make both languages more

verbose'. A combination of features offered by both languages

would appear to be more appealing to the user. Code optimization,

error detection, and debugging facilities offered by these compilers

are not as sophisticated as one would expect on such a powerful

machine as the STAR-100.

In view of the substantial program redesign that was necessary

to produce an efficient vector code, there are serious doubts about

the effectiveness of a simple, mechanical translation of serial code.

In fact, we agree with Stone(l) that vectorizing compilers which

would produce such translations would be "..:stop gaps at best".

CONCLUSION

Since it appears that a vector formulation is a more

"natural" expression of the problem, it would seem that as

vector machines become more prevalent, increasing numbers of

algorithms will be written directly in vector form. Therefore,

it is our opinion that vectorizers now have and will continue

-6-

to have only limited utility. Thus, the greater part of future

effort in software development should be directed towards the

vector . languages themselves.
K

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Dr. James Hansen of

GISS for funding the project and for his constant supervision

and guidance. Ms. Gail Whitten, Mssrs. Robert Cralle, Frank

McMahon, and Stanley Solberk of Lawrence Livermore Laboratory

provided valuable assistance in the implementation. Mssrs.

Arthur Lazanoff, Chet Berkey, and Harold Reppe of Control Data

Corporation deserve special acknowledgement for their continued

valuable assistance. Mr. John Laubenheimer of GTE Information

Systems wrote sections of the code. The authors are also

indebted to Mr. V.C. Devan, project manager at GTE/IS for his

moral support.

DEDICATION

The authors would like to dedicate this paper to the

memory of Mr. Ronald Karn of GTE/IS who, until his untimely

,.death, was an important contributor to this project.

w

F

-7-

i a	 ,.

TABLE I. MACHINE COMPARISONS

360/95(GISS) sect, STAR(CDC) secs. 95:STAR

Dynamics* 0.65 0.056 11.61:1

Physics* 0.41 0.070 5.85:1

14-day Run 1472.31 1.43.92 10.23:1

TABLE 11. LANGUAGE COMPARISONS

LRLTRAN(LLL) secs. STAR FORTRAN(CDC)
secs.

LLL:CDC

Dynamics* 0.085 0.056 1.52:1

R

S

*Timings are four a single call.

+1.

I

r*
 i !	 t M

REFERENCES

(1) Stone, H.S., "Problems of Parallel Computations" -
Complexity of Sequential and Parallel Numerical Algorithms

(ad. Traub, J.F. - Academic Press	 _ .

(2) Somerville, R.C.J., at al. "The GISS Model of the Global
Atmosphere" - Journal of the Atmospheric Sciences, 31
Ho. 1 0 pp. 84-117 (1974).

(3) Martin, J.T., Zwakenberg, R.G., Solbeck, S.V.
Livermore Time-Sharing System, Pt. III, ch. 207 LTSS-207
(Ed. 4) - December 1974.

(4) Control Data Corporation - FORTRAN Language Reference
Manual STAR-100 Computer System - No. 60386200 - 1976.

(5) Karn, R. - "Parallel Computing: Timing for ILLIAC IV" -
Software, Practice and Experience, vol. 6, pp. 579-584
(1976).

(6) Control Data Corporation - STAR-100 Computer - Hardware
Reference Manual - No. 60256000 1975.

,v

t

	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf

