183 research outputs found

    Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA

    Get PDF
    Background Artificial selection has caused rapid evolution in domesticated species. The identification of selection footprints across domesticated genomes can contribute to uncover the genetic basis of phenotypic diversity. Methodology/Main Findings Genome wide footprints of pig domestication and selection were identified using massive parallel sequencing of pooled reduced representation libraries (RRL) representing ~2% of the genome from wild boar and four domestic pig breeds (Large White, Landrace, Duroc and Pietrain) which have been under strong selection for muscle development, growth, behavior and coat color. Using specifically developed statistical methods that account for DNA pooling, low mean sequencing depth, and sequencing errors, we provide genome-wide estimates of nucleotide diversity and genetic differentiation in pig. Widespread signals suggestive of positive and balancing selection were found and the strongest signals were observed in Pietrain, one of the breeds most intensively selected for muscle development. Most signals were population-specific but affected genomic regions which harbored genes for common biological categories including coat color, brain development, muscle development, growth, metabolism, olfaction and immunity. Genetic differentiation in regions harboring genes related to muscle development and growth was higher between breeds than between a given breed and the wild boar. Conclusions/Significance These results, suggest that although domesticated breeds have experienced similar selective pressures, selection has acted upon different genes. This might reflect the multiple domestication events of European breeds or could be the result of subsequent introgression of Asian alleles. Overall, it was estimated that approximately 7% of the porcine genome has been affected by selection events. This study illustrates that the massive parallel sequencing of genomic pools is a cost-effective approach to identify footprints of selection

    A porcine model system of BRCA1 driven breast cancer

    Get PDF
    BRCA1 is a breast and ovarian tumor suppressor. Hereditary mutations in BRCA1 result in a predisposition to breast cancer, and BRCA1 expression is down-regulated in ~30% of sporadic cases. The function of BRCA1 remains poorly understood, but it appears to play an important role in DNA repair and the maintenance of genetic stability. Mouse models of BRCA1 deficiency have been developed in an attempt to understand the role of the gene in vivo. However, the subtle nature of BRCA1 function and the well-known discrepancies between human and murine breast cancer biology and genetics may limit the utility of mouse systems in defining the function of BRCA1 in cancer and validating the development of novel therapeutics for breast cancer. In contrast to mice, pig biological systems and cancer genetics appear to more closely resemble their human counterparts. To determine if BRCA1 inactivation in pig cells promotes their transformation and may serve as a model for the human disease, we developed an immortalized porcine breast cell line and stably inactivated BRCA1 using miRNA. The cell line developed characteristics of breast cancer stem cells and exhibited a transformed phenotype. These results validate the concept of using pigs as a model to study BRCA1 defects in breast cancer and establish the first porcine breast tumor cell line

    Development of a Long-Term Anesthesia Protocol for Swine

    Get PDF
    The use of swine as a preclinical model is becoming standard practice because of the similarity to humans in size, anatomy, physiology, and genetics. Anesthesia is frequently required for swine in research due to the nature of the invasive procedures that are performed. Developing a protocol which considers the physiological effects of the pharmacological agents and the proper way to administer these agents is important when designing experiments. We aimed to develop an anesthesia protocol for magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE) of swine that allows the animals to be anesthetized for multiple hours and for the administration of pharmacological and contrast agents to be done while the animal is in the MRI scanner. We used three pigs weighing 68, 40, and 30 kg. We found that an initial intramuscular injection of telazol/ketamine/xylazine (TKX) at a dose of 1ml/23kg, followed by endotracheal intubation and 1.5% isoflurane+1.5ml/min oxygen successfully anesthetized all swine for up to 6hrs. For administering contrast agents during an MRI, an auricular vein catheter was found to be effective but a jugular cutdown is possible when requiring the injection of larger volumes. Physiological monitoring using a pulse oximeter and rectal thermometer every 10-15 minutes proved effective. We also found that the animals could not tolerate TKX post-isoflurane anesthesia, which is something to consider if isoflurane anesthesia cannot be continued during transport. Development of this protocol allows for the ease of the anesthetizing process, an understanding of the physiological factors and the effects of anesthesia.Ope

    Inducible and Reversible Clock Gene Expression in Brain Using the tTA System for the Study of Circadian Behavior

    Get PDF
    The mechanism of circadian oscillations in mammals is cell autonomous and is generated by a set of genes that form a transcriptional autoregulatory feedback loop. While these “clock genes” are well conserved among animals, their specific functions remain to be fully understood and their roles in central versus peripheral circadian oscillators remain to be defined. We utilized the in vivo inducible tetracycline-controlled transactivator (tTA) system to regulate Clock gene expression conditionally in a tissue-specific and temporally controlled manner. Through the use of Secretogranin II to drive tTA expression, suprachiasmatic nucleus– and brain-directed expression of a tetO::Clock(Δ19) dominant-negative transgene lengthened the period of circadian locomotor rhythms in mice, whereas overexpression of a tetO::Clock(wt) wild-type transgene shortened the period. Low doses (10 μg/ml) of doxycycline (Dox) in the drinking water efficiently inactivated the tTA protein to silence the tetO transgenes and caused the circadian periodicity to return to a wild-type state. Importantly, low, but not high, doses of Dox were completely reversible and led to a rapid reactivation of the tetO transgenes. The rapid time course of tTA-regulated transgene expression demonstrates that the CLOCK protein is an excellent indicator for the kinetics of Dox-dependent induction/repression in the brain. Interestingly, the daily readout of circadian period in this system provides a real-time readout of the tTA transactivation state in vivo. In summary, the tTA system can manipulate circadian clock gene expression in a tissue-specific, conditional, and reversible manner in the central nervous system. The specific methods developed here should have general applicability for the study of brain and behavior in the mouse

    A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of a high-density SNP genotyping chip and a reference genome sequence of the pig (<it>Sus scrofa</it>) enabled the construction of a high-density linkage map. A high-density linkage map is an essential tool for further fine-mapping of quantitative trait loci (QTL) for a variety of traits in the pig and for a better understanding of mechanisms underlying genome evolution.</p> <p>Results</p> <p>Four different pig pedigrees were genotyped using the Illumina PorcineSNP60 BeadChip. Recombination maps for the autosomes were computed for each individual pedigree using a common set of markers. The resulting genetic maps comprised 38,599 SNPs, including 928 SNPs not positioned on a chromosome in the current assembly of the pig genome (build 10.2). The total genetic length varied according to the pedigree, from 1797 to 2149 cM. Female maps were longer than male maps, with a notable exception for SSC1 where male maps are characterized by a higher recombination rate than females in the region between 91–250 Mb. The recombination rates varied among chromosomes and along individual chromosomes, regions with high recombination rates tending to cluster close to the chromosome ends, irrespective of the position of the centromere. Correlations between main sequence features and recombination rates were investigated and significant correlations were obtained for all the studied motifs. Regions characterized by high recombination rates were enriched for specific GC-rich sequence motifs as compared to low recombinant regions. These correlations were higher in females than in males, and females were found to be more recombinant than males at regions where the GC content was greater than 0.4.</p> <p>Conclusions</p> <p>The analysis of the recombination rate along the pig genome highlighted that the regions exhibiting higher levels of recombination tend to cluster around the ends of the chromosomes irrespective of the location of the centromere. Major sex-differences in recombination were observed: females had a higher recombination rate within GC-rich regions and exhibited a stronger correlation between recombination rates and specific sequence features.</p

    Pig genome sequence - analysis and publication strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing.</p> <p>Results</p> <p>Assemblies of the BAC clone derived genome sequence have been annotated using the Pre-Ensembl and Ensembl automated pipelines and made accessible through the Pre-Ensembl/Ensembl browsers. The current annotated genome assembly (Sscrofa9) was released with Ensembl 56 in September 2009. A revised assembly (Sscrofa10) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30× genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were preferentially selected for sequencing. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication.</p> <p>Conclusions</p> <p>In this marker paper, the Swine Genome Sequencing Consortium (SGSC) sets outs its plans for analysis of the pig genome sequence, for the application and publication of the results.</p

    Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues

    Get PDF
    Copyright @ 2012 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 85 reproduction in any medium, provided the original author and source are credited. The article was made available through the Brunel University Open Access Publishing Fund.BACKGROUND: In interphase nuclei of a wide range of species chromosomes are organised into their own specific locations termed territories. These chromosome territories are non-randomly positioned in nuclei which is believed to be related to a spatial aspect of regulatory control over gene expression. In this study we have adopted the pig as a model in which to study interphase chromosome positioning and follows on from other studies from our group of using pig cells and tissues to study interphase genome re-positioning during differentiation. The pig is an important model organism both economically and as a closely related species to study human disease models. This is why great efforts have been made to accomplish the full genome sequence in the last decade. RESULTS: This study has positioned most of the porcine chromosomes in in vitro cultured adult and embryonic fibroblasts, early passage stromal derived mesenchymal stem cells and lymphocytes. The study is further expanded to position four chromosomes in ex vivo tissue derived from pig kidney, lung and brain. CONCLUSIONS: It was concluded that porcine chromosomes are also non-randomly positioned within interphase nuclei with few major differences in chromosome position in interphase nuclei between different cell and tissue types. There were also no differences between preferred nuclear location of chromosomes in in vitro cultured cells as compared to cells in tissue sections. Using a number of analyses to ascertain by what criteria porcine chromosomes were positioned in interphase nuclei; we found a correlation with DNA content.This study is partly supported by Sygen International PLC

    Genomic diversity and differentiation of a managed island wild boar population

    Get PDF
    The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (F ST =0.126-0.138), and from DP (F ST =0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, F ST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.</p

    An improved pig reference genome sequence to enable pig genetics and genomics research.

    Get PDF
    BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs
    corecore