29 research outputs found
UJIAN NASIONAL MENGKEBIRI KEDAULATAN GURU
Stardisasi telah menjadi pilihan Kebijakan pendidikan di Indonesia, sebagai memenuhi dari pentingnya lokal, nasional dan global. ISO 9000 adalah sebagai standardisasi internasional kualitas pendidikan yang telah dikompromikan oleh banyak negara di dunia telah memberikan pelayanan terbaik dan memberikan harapan konsumen pendidikan. Standarisasi kelulusan siswa di Indonesia adalah Ujian Nasional, oleh karena pelaksanaan ini telah kehilangan nilai kejujuran, kebaikan dan karakter pendidikan kita . Karena alasan pengguna standardisasi Ujian Nasional tidak sebagai salah satu di semua ukuran fundamental sukses nasional pendidikan di Indonesia. Ujian Nasional telah kehilangan kedaulatan guru karena tidak memberikan autoritas sama sekali untuk guru untuk memberikan nilai kepada siswa mereka. Pemerintah perlu mengambil kebijakan lain untuk mengubah Ujian Nasional yang satu dapat menciptakan kreativitas siswa dan guru untuk tidak membunuh demokrasi kitaStardisasi telah menjadi pilihan Kebijakan pendidikan di Indonesia, sebagai memenuhi dari pentingnya lokal, nasional dan global. ISO 9000 adalah sebagai standardisasi internasional kualitas pendidikan yang telah dikompromikan oleh banyak negara di dunia telah memberikan pelayanan terbaik dan memberikan harapan konsumen pendidikan. Standarisasi kelulusan siswa di Indonesia adalah Ujian Nasional, oleh karena pelaksanaan ini telah kehilangan nilai kejujuran, kebaikan dan karakter pendidikan kita . Karena alasan pengguna standardisasi Ujian Nasional tidak sebagai salah satu di semua ukuran fundamental sukses nasional pendidikan di Indonesia. Ujian Nasional telah kehilangan kedaulatan guru karena tidak memberikan autoritas sama sekali untuk guru untuk memberikan nilai kepada siswa mereka. Pemerintah perlu mengambil kebijakan lain untuk mengubah Ujian Nasional yang satu dapat menciptakan kreativitas siswa dan guru untuk tidak membunuh demokrasi kit
Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/
2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio
Stress modulation as a means to improve yeasts for lignocellulose bioconversion
The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress,
potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated
bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein
response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and
stress modulation strategies that can be followed to improve yeasts for this application. We also explore published –omics data
and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or
alleles that will make positive contributions to the overall robustness of 2G industrial strains
Overexpression of NADH-dependent fumarate reductase improves d-xylose fermentation in recombinant Saccharomyces cerevisiae
Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD+. The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5∆17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5∆17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD+ in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed
Timantinkaltaisen hiilipinnoitteen mekaaninen käyttäytyminen mikrosysteemeissä
The field of systems biology is often held back by difficulties in obtaining comprehensive, high-quality, quantitative data sets. In this paper, we undertook an interlaboratory effort to generate such a data set for a very large number of cellular components in the yeast Saccharomyces cerevisiae, a widely used model organism that is also used in the production of fuels, chemicals, food ingredients and pharmaceuticals. With the current focus on biofuels and sustainability, there is much interest in harnessing this species as a general cell factory. In this study, we characterized two yeast strains, under two standard growth conditions. We ensured the high quality of the experimental data by evaluating a wide range of sampling and analytical techniques. Here we show significant differences in the maximum specific growth rate and biomass yield between the two strains. On the basis of the integrated analysis of the high-throughput data, we hypothesize that differences in phenotype are due to differences in protein metabolism