2,562 research outputs found

    Slow relaxation, confinement, and solitons

    Full text link
    Millisecond crystal relaxation has been used to explain anomalous decay in doped alkali halides. We attribute this slowness to Fermi-Pasta-Ulam solitons. Our model exhibits confinement of mechanical energy released by excitation. Extending the model to long times is justified by its relation to solitons, excitations previously proposed to occur in alkali halides. Soliton damping and observation are also discussed

    A unified evaluation of iterative projection algorithms for phase retrieval

    Get PDF
    Iterative projection algorithms are successfully being used as a substitute of lenses to recombine, numerically rather than optically, light scattered by illuminated objects. Images obtained computationally allow aberration-free diffraction-limited imaging and the possibility of using radiation for which no lenses exist. The challenge of this imaging technique is transfered from the lenses to the algorithms. We evaluate these new computational ``instruments'' developed for the phase retrieval problem, and discuss acceleration strategies.Comment: 12 pages, 9 figures, revte

    Global Newtonian limit for the Relativistic Boltzmann Equation near Vacuum

    Full text link
    We study the Cauchy Problem for the relativistic Boltzmann equation with near Vacuum initial data. Unique global in time "mild" solutions are obtained uniformly in the speed of light parameter c1c \ge 1. We furthermore prove that solutions to the relativistic Boltzmann equation converge to solutions of the Newtonian Boltzmann equation in the limit as cc\to\infty on arbitrary time intervals [0,T][0,T], with convergence rate 1/c2ϵ1/c^{2-\epsilon} for any ϵ(0,2)\epsilon \in(0,2). This may be the first proof of unique global in time validity of the Newtonian limit for a Kinetic equation.Comment: 35 page

    Limits on the Dipole Moments of the τ\tau-Lepton via the Process $e^{+}e^{-}\to \tau^+ \tau^- \gamma in a Left-Right Symmetric Model

    Full text link
    Limits on the anomalous magnetic moment and the electric dipole moment of the τ\tau lepton are calculated through the reaction e+eτ+τγe^{+}e^{-}\to \tau^+ \tau^- \gamma at the Z1Z_1-pole and in the framework of a left-right symmetric model. The results are based on the recent data reported by the L3 Collaboration at CERN LEP. Due to the stringent limit of the model mixing angle ϕ\phi, the effect of this angle on the dipole moments is quite small.Comment: 15 pages, 3 figure

    Remote alignment of large mirror array for RICH detectors

    Get PDF
    Image focusing in large RICH detectors is obtained by composite systems of mirror elements. Monitoring and adjusting the alignment of the mirror elements during data taking are important handles to improve the detector resolution. Mirror adjustment via piezoelectric actuators can combine unprecedented accuracy and match some fundamental requirements: the detector material budget can be kept low and the high purity of the gas radiator can be preserved, a prerequisite when UV photons are detected. A system based on this principle, well suited for COMPASS RICH-1 mirrors, is proposed

    Hybrid Newton-type method for a class of semismooth equations

    Get PDF
    In this paper, we present a hybrid method for the solution of a class of composite semismooth equations encountered frequently in applications. The method is obtained by combining a generalized finite-difference Newton method to an inexpensive direct search method. We prove that, under standard assumptions, the method is globally convergent with a local rate of convergence which is superlinear or quadratic. We report also several numerical results obtained applying the method to suitable reformulations of well-known nonlinear complementarity problem

    Wi-Fi Influence on LTE-U Downlink Data and Control Channel Performance in Shared Frequency Bands

    Get PDF
    Nowadays, providers of wireless services try to find appropriate ways to increase user data throughput mainly for future 5G cellular networks. Utilizing the unlicensed spectrum (ISM bands) for such purpose is a promising solution: unlicensed frequency bands can be used as a complementary data pipeline for UMTS LTE (Universal Mobile Telecommunication System - Long Term Evolution) and its advanced version LTE-Advanced, especially in pico- or femtocells. However, coexisting LTE and WLAN services in shared ISM bands at the same time can suffer unwanted performance degradation. This paper focuses predominantly on co-channel coexistence issues (worst case) between LTE and WLAN (IEEE 802.11n) services in the ISM band. From the viewpoint of novelty, the main outcomes of this article are follows. Firstly, an appropriate signal processing approach for coexisting signals with different features in the baseband is proposed. It is applied in advanced link-layer simulators and its correctness is verified by various simulations. Secondly, the influence of IEEE 802.11n on LTE data and control channel performance is explored. Performance evaluation is based on error rate curves, depending on Signal-to-Interference ratio (SIR). Presented results allow for better understanding the influence of IEEE 802.11n on the LTE downlink physical control channels (PCCH) and are valuable for mobile infrastructure vendors and operators to optimize system parameters

    Atrial natriuretic peptide levels in Plasma and in Cardiac tissues after chronic hypoxia in Rats

    Get PDF
    1. Atrial natriuretic peptide (ANP) levels were measured in cardiac tissues and in plasma from adult rats exposed to chronic alveolar hypoxia for periods of 2 h, 24 h and 7 days. Levels were also measured in rats that were maintained in hypoxia for 7 days and then returned to air for 24 h. 2. Plasma ANP was not altered at 2 h but was significantly increased at both 24 h and at 7 days. Plasma ANP in animals exposed to hypoxia for 7 days was normal 24 h after returning to air breathing, despite the persistence of indices of pulmonary hypertension. 3. No significant right atrial hypertrophy was observed under these conditions of chronic hypoxia. A reduction in right atrial ANP content was found at 24 h and was accompanied by a decrease in the number of electrondense granules per right atrial muscle cell. After exposure to hypoxia for 7 days, right atrial ANP and granule number was not different from control, and no alteration was found in right atrial ANP level after removal from the hypoxic environment. 4. No significant right ventricular hypertrophy was produced by exposure to hypoxia for 2 or 24 h. In the former group ventricular ANP had decreased significantly compared with control. Right ventricular hypertrophy was found in both the hypoxic groups after exposure for 7 days, when selective increases in right ventricular ANP content were found. 5. These findings are consistent with the hypothesis that ANP release occurs on exposure to chronic hypoxia and is independent of the associated cardiac hypertrophy and pulmonary vascular remodelling. The findings may have relevance to the natriuresis and reported changes in the renin-angiotensin-aldosterone axis under hypoxic conditions

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Tumor-Microenvironment Characterization of the MB49 Non-Muscle-Invasive Bladder-Cancer Orthotopic Model towards New Therapeutic Strategies.

    Get PDF
    Bacillus Calmette-Guérin (BCG) instillations for the treatment of non-muscle-invasive bladder cancer patients can result in significant side effects and treatment failure. Immune checkpoint blockade and/or decreasing tumor-infiltrating myeloid suppressor cells may be alternative or complementary treatments. Here, we have characterized immune cell infiltration and chemoattractant molecules in mouse orthotopic MB49 bladder tumors. Our data show a 100-fold increase in CD45 <sup>+</sup> immune cells from day 5 to day 9 tumors including T cells and mainly myeloid cells. Both monocytic myeloid-derived suppressor-cells (M-MDSC) and polymorphonuclear (PMN)-MDSC were strongly increased in day 9 tumors, with PMN-MDSC representing ca. 70% of the myeloid cells in day 12 tumors, while tumor associated macrophages (TAM) were only modestly increased. The kinetic of PD-L1 tumor expression correlated with published data from patients with PD-L1 expressing bladder tumors and with efficacy of anti-PD-1 treatment, further validating the orthotopic MB49 bladder-tumor model as suitable for designing novel therapeutic strategies. Comparison of chemoattractants expression during MB49 bladder tumors grow highlighted CCL8 and CCL12 (CCR2-ligands), CCL9 and CCL6 (CCR-1-ligands), CXCL2 and CXCL5 (CXCR2-ligands), CXCL12 (CXCR4-ligand) and antagonist of C5/C5a as potential targets to decrease myeloid suppressive cells. Data obtained with a single CCR2 inhibitor however showed that the complex chemokine crosstalk would require targeting multiple chemokines for anti-tumor efficacy
    corecore