19,528 research outputs found

    A systematic review of empirical methods for modelling sectoral carbon emissions in China

    Full text link
    © 2019 Elsevier Ltd A number of empirical methods have been developed to study China's sectoral carbon emissions (CSCE). Measuring these emissions is important for climate change mitigation. While several articles have reviewed specific methods, few attempts conduct a systematic analysis of all the major research methods. In total 807 papers were published on CSCE research between 1997 and 2017. The primary source of literature for this analysis was taken from the Web of Science database. Based on a bibliometric analysis using knowledge mapping with the software CiteSpace, the review identified five common families of methods: 1) environmentally-extended input-output analysis (EE-IOA), 2) index decomposition analysis (IDA), 3) econometrics, 4) carbon emission control efficiency evaluation and 5) simulation. The research revealed the main trends in each family of methods and has visualized this research into ten research clusters. In addition, the paper provides a direct comparison of all methods. The research results can help scholars quickly identify and compare different methods for addressing specific research questions

    Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix

    Full text link
    We consider a symmetric matrix, the entries of which depend linearly on some parameters. The domains of the parameters are compact real intervals. We investigate the problem of checking whether for each (or some) setting of the parameters, the matrix is positive definite (or positive semidefinite). We state a characterization in the form of equivalent conditions, and also propose some computationally cheap sufficient\,/\,necessary conditions. Our results extend the classical results on positive (semi-)definiteness of interval matrices. They may be useful for checking convexity or non-convexity in global optimization methods based on branch and bound framework and using interval techniques

    Doping dependent evolution of magnetism and superconductivity in Eu1-xKxFe2As2 (x = 0-1) and temperature dependence of lower critical field Hc1

    Full text link
    We have synthesized the polycrystalline samples of Eu1-xKxFe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac & dc magnetic susceptibility, and electrical resistivity measurements. We have seen a clear signature of the coexistence of superconducting transition (Tc = 5.5 K) with SDW ordering in our under doped sample viz. x = 0.15. The spin density wave transition observed in EuFe2As2 get completely suppressed at x = 0.3 and superconductivity arises below 20 K. Superconducting transition temperature Tc increases with increase in K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent T(x) phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu-moments coexists with superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest 2+ valence states of Eu ions. We also present the temperature dependence of the lower critical field Hc1 of superconducting polycrystalline samples. The value of Hc1(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account is 248, 385, and 250 Oe, respectively. The London penetration depth {\lambda}(T) calculated from the lower critical field does not show exponential behaviour at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power-law feature down to T = 0.4 Tc, as observed in Ba1-xKxFe2As2 and BaFe2-xCoxAs2.Comment: 17 pages, 10 figure

    Advanced stimuli-responsive polymer nanocapsules with enhanced capabilities for payloads delivery

    No full text

    Golden Rectangle Treemap

    Full text link
    © Published under licence by IOP Publishing Ltd. Treemaps, a visualization method of representing hierarchical data sets, are becoming more and more popular for its efficient and compact displays. Several algorithms have been proposed to create more useful display by controlling the aspect ratios of the rectangles that make up a treemap. In this paper, we introduce a new treemap algorithm, generating layout in which the rectangles are easier to select and hierarchy information is easier to obtain. This algorithm generates rectangles which approximate golden rectangles. To prove the effectiveness of our algorithm, at the end of this paper several analyses on golden rectangle treemap have been done on disk file system

    Searching for biosignatures by their rotational spectrum: global fit and methyl group internal rotation features of dimethylsulphoxide up to 116 GHz

    Get PDF
    The identification and quantification of molecules in interstellar space and atmospheres of planets in the solar systems and in exoplanets rely on spectroscopicmethods and laboratory work is essential to provide the community with the spectral features needed to analyse cosmological observations. Rotational spectroscopy in particular, with its intrinsic high resolution, allows the unambiguous identification of biomolecular building blocks and biosignature gases which can be correlated with the origin of life or the identification of habitable planets.We report the extension of the measured rotational transition frequencies of dimethylsulphoxide and its 34S and 13C isotopologues in the millimetrewave range (59.6–78.4 GHz) by use of an absorption spectrometer based on the supersonic expansion technique. Hyperfine patterns related to the methyl group internal rotation were analysed in the microwave range region (6–18 GHz) with a Pulsed Jet Fourier Transform spectrometer at extremely high resolution (2 kHz) and reliable predictions up to 116 GHz are provided. The focus on sulphur-bearing molecules is motivated by the fact that sulphur is largely involved in the intra- and inter-molecular hydrogen bonds in proteins and although it is the 10th most abundant element in the known Universe, understanding its chemistry is still amatter of debate.Moreover, sulphur-bearingmolecules, in particular dimethylsulphoxide, have been indicated as possible biosignature gases to be monitored in the search of habitable exoplanets
    • …
    corecore