1,933 research outputs found

    Groundwater reinjection and heat dissipation: lessons from the operation of a large groundwater cooling system in Central London

    Get PDF
    The performance of a large open-loop groundwater cooling scheme in a shallow alluvial aquifer at a prominent public building in Central London has been monitored closely over its first 2 years of operation. The installed system provided cooling to the site continuously for a period of 9 months between June 2012 and April 2013. During this period, c. 131300 m3 of groundwater was abstracted from a single pumping well and recharged into a single injection borehole. The amount of heat rejected in this period amounts to c. 1.37 GWh. A programme of hydraulic testing was subsequently undertaken over a 3 month period between July and October 2013 to evaluate the performance of the injection borehole. The data indicate no significant change in injection performance between commissioning trials undertaken in 2010 and the most recent period of testing, as evidenced by comparison of injection pressures for given flow rates in 2010 and 2013. Continuous temperature monitoring of the abstracted water, the discharge and a number of observation wells demonstrates the evolution of a heat plume in the aquifer in response to heat rejection and subsequent dissipation of this heat during the 18 month planned cessation

    Pulse Shape Analysis with scintillating bolometers

    Full text link
    Among the detectors used for rare event searches, such as neutrinoless Double Beta Decay (0ν\nuDBD) and Dark Matter experiments, bolometers are very promising because of their favorable properties (excellent energy resolution, high detector efficiency, a wide choice of different materials used as absorber, ...). However, up to now, the actual interesting possibility to identify the interacting particle, and thus to greatly reduce the background, can be fulfilled only with a double read-out (i.e. the simultaneous and independent read out of heat and scintillation light or heat and ionization). This double read-out could greatly complicate the assembly of a huge, multi-detector array, such as CUORE and EURECA. The possibility to recognize the interacting particle through the shape of the thermal pulse is then clearly a very interesting opportunity. While detailed analyses of the signal time development in purely thermal detectors have not produced so far interesting results, similar analyses on macro-bolometers (∼\sim10-500 g) built with scintillating crystals showed that it is possible to distinguish between an electron or γ\gamma-ray and an α\alpha particle interaction (i.e. the main source of background for 0ν\nuDBD experiments based on the bolometric technique). Results on pulse shape analysis of a CaMoO4_4 crystal operated as bolometer is reported as an example. An explanation of this behavior, based on the energy partition in the heat and scintillation channels, is also presented.Comment: Presented at the 14th International Workshop on Low Temperature Detectors, proceedings to be published in the Journal of Low Temperature Physic

    Low-loss criterion and effective area considerations for photonic crystal fibers

    Get PDF
    We study the class of endlessly single-mode all-silica photonic crystal fibers with a triangular air-hole cladding. We consider the sensibility to longitudinal nonuniformities and the consequences and limitations for realizing low-loss large-mode area photonic crystal fibers. We also discuss the dominating scattering mechanism and experimentally we confirm that both macro and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic

    An early Little Ice Age brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people

    Get PDF
    Caspian Sea level has undergone significant changes through time with major impacts not only on the surrounding coasts, but also offshore. This study reports a brackish water invasion on the southern coast of the Caspian Sea constructed from a multi-proxy analysis of sediment retrieved from the Langarud wetland. The ground surface level of wetland is >6 m higher than the current Caspian Sea level (at -27.41 m in 2014) and located >11 km far from the coast. A sequence covering the last millennium was dated by three radiocarbon dates. The results from this new study suggest that Caspian Sea level rose up to at least -21.44 m (i.e. >6 m above the present water level) during the early Little Ice Age. Although previous studies in the southern coast of the Caspian Sea have detected a high-stand during the Little Ice Age period, this study presents the first evidence that this high-stand reached so far inland and at such a high altitude. Moreover, it confirms one of the very few earlier estimates of a high-stand at -21 m for the second half of the 14th century. The effects of this large-scale brackish water invasion on soil properties would have caused severe disruption to regional agriculture, thereby destabilizing local dynasties and facilitating a rapid Turko-Mongol expansion of Tamerlane’s armies from the east.N Ghasemi (INIOAS), V Jahani (Gilan Province Cultural Heritage and Tourism Organisation) and A Naqinezhad (University of Mazandaran), INQUA QuickLakeH project (no. 1227) and to the European project Marie Curie, CLIMSEAS-PIRSES-GA-2009-24751

    Why Do States Develop Multi-tier Emigrant Policies? Evidence from Egypt

    Get PDF
    Why do states vary their policies towards their citizens abroad, and why are some emigrant groups treated preferentially to others? The literature on the politics of international migration has yet to explore this as a separate field of inquiry, assuming that states adopt a single policy that encourages, sustains or prevents emigration abroad. Yet, in the case of Egypt, the state developed a multi-tiered policy that distinctly favoured specific communities abroad over others. I hypothesise that policy differentiation is based upon the perceived utility of the emigrant group remaining abroad versus the utility of its return. This utility is determined by two factors: the sending state’s domestic political economy priorities and its foreign policy objectives

    Is Neolithic land use correlated with demography? An evaluation of pollen-derived land cover and radiocarbon-inferred demographic change from Central Europe

    Get PDF
    The transformation of natural landscapes in Middle Europe began in the Neolithic as a result of the introduction of food-producing economies. This paper examines the relation between land-cover and demographic change in a regionally restricted case study. The study area is the Western Lake Constance area which has very detailed palynological as well as archaeological records. We compare land-cover change derived from nine pollen records using a pseudo-biomisation approach with 14C date probability density functions from archaeological sites which serve as a demographic proxy. We chose the Lake Constance area as a regional example where the pollen signal integrates a larger spatial pattern. The land-cover reconstructions for this region show first notable impacts at the Middle to Young Neolithic transition. The beginning of the Bronze Age is characterised by increases of arable land and pasture/meadow, whereas the deciduous woodland decreases dramatically. Changes in the land-cover classes show a correlation with the 14C density curve: the correlation is best with secondary woodland in the Young Neolithic which reflects the lake shore settlement dynamics. In the Early Bronze Age, the radiocarbon density correlates with open land-cover classes, such as pasture, meadow and arable land, reflecting a change in the land-use strategy. The close overall correspondence between the two archives implies that population dynamics and land-cover change were intrinsically linked. We therefore see human impact as a key driver for vegetation change in the Neolithic. Climate might have an influence on vegetation development, but the changes caused by human land use are clearly detectable from Neolithic times, at least in these densely settled, mid-altitude landscapes

    Optical nanofibers and spectroscopy

    Full text link
    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on building and testing a single-fiber bi-modal interferometer.Comment: 13 pages, 18 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: changed title, clarification of some points in the text, added references, replacement of Figure 13

    CdWO4 scintillating bolometer for Double Beta Decay: Light and Heat anticorrelation, light yield and quenching factors

    Full text link
    We report the performances of a 0.51 kg CdWO4 scintillating bolometer to be used for future Double Beta Decay Experiments. The simultaneous read-out of the heat and the scintillation light allows to discriminate between different interacting particles aiming at the disentanglement and the reduction of background contribution, key issue for next generation experiments. We will describe the observed anticorrelation between the heat and the light signal and we will show how this feature can be used in order to increase the energy resolution of the bolometer over the entire energy spectrum, improving up to a factor 2.6 on the 2615 keV line of 208Tl. The detector was tested in a 433 h background measurement that permitted to estimate extremely low internal trace contaminations of 232Th and 238U. The light yield of gamma/beta, alpha and neutrons is presented. Furthermore we developed a method in order to correctly evaluate the absolute thermal quenching factor of alpha particles in scintillating bolometers.Comment: 8 pages 7 figure

    Propagation of Light in Photonic Crystal Fibre Devices

    Full text link
    We describe a semi-analytical approach for three-dimensional analysis of photonic crystal fibre devices. The approach relies on modal transmission-line theory. We offer two examples illustrating the utilization of this approach in photonic crystal fibres: the verification of the coupling action in a photonic crystal fibre coupler and the modal reflectivity in a photonic crystal fibre distributed Bragg reflector.Comment: 15 pages including 7 figures. Accepted for J. Opt. A: Pure Appl. Op

    Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes

    Get PDF
    Pollen records from large lakes have been used for quantitative palaeoclimate reconstruction, but the influences that lake size (as a result of species-specific variations in pollen dispersal patterns that smaller pollen grains are more easily transported to lake centre) and taphonomy have on these climatic signals have not previously been systematically investigated. We introduce the concept of pollen source area to pollen-based climate calibration using the north-eastern Tibetan Plateau as our study area. We present a pollen data set collected from large lakes in the arid to semi-arid region of central Asia. The influences that lake size and the inferred pollen source areas have on pollen compositions have been investigated through comparisons with pollen assemblages in neighbouring lakes of various sizes. Modern pollen samples collected from different parts of Lake Donggi Cona (in the north-eastern part of the Tibetan Plateau) reveal variations in pollen assemblages within this large lake, which are interpreted in terms of the species-specific dispersal and depositional patterns for different types of pollen, and in terms of fluvial input components. We have estimated the pollen source area for each lake individually and used this information to infer modern climate data with which to then develop a modern calibration data set, using both the multivariate regression tree (MRT) and weighted-averaging partial least squares (WA-PLS) approaches. Fossil pollen data from Lake Donggi Cona have been used to reconstruct the climate history of the north-eastern part of the Tibetan Plateau since the Last Glacial Maximum (LGM). The mean annual precipitation was quantitatively reconstructed using WA-PLS: extremely dry conditions are found to have dominated the LGM, with annual precipitation of around 100 mm, which is only 32% of present-day precipitation. A gradually increasing trend in moisture conditions during the Late Glacial is terminated by an abrupt reversion to a dry phase that lasts for about 1000 yr and coincides with "Heinrich event 1" in the North Atlantic region. Subsequent periods corresponding to the Bølling/Allerød interstadial, with annual precipitation (<i>P</i><sub>ann</sub>) of about 350 mm, and the Younger Dryas event (about 270 mm <i>P</i><sub>ann</sub>) are followed by moist conditions in the early Holocene, with annual precipitation of up to 400 mm. A drier trend after 9 cal. ka BP is followed by a second wet phase in the middle Holocene, lasting until 4.5 cal. ka BP. Relatively steady conditions with only slight fluctuations then dominate the late Holocene, resulting in the present climatic conditions. The climate changes since the LGM have been primarily driven by deglaciation and fluctuations in the intensity of the Asian summer monsoon that resulted from changes in the Northern Hemisphere summer solar insolation, as well as from changes in the North Atlantic climate through variations in the circulation patterns and intensity of the westerlies
    • …
    corecore