1,222 research outputs found

    Maser Oscillation in a Whispering-Gallery-Mode Microwave Resonator

    Full text link
    We report the first observation of above-threshold maser oscillation in a whispering-gallery(WG)-mode resonator, whose quasi-transverse-magnetic, 17th azimuthal-order WG mode, at a frequency of approx. 12.038 GHz, with a loaded Q of several hundred million, is supported on a cylinder of mono-crystalline sapphire. An electron spin resonance (ESR) associated with Fe3+ ions, that are substitutively included within the sapphire at a concentration of a few parts per billion, coincides in frequency with that of the (considerably narrower) WG mode. By applying a c.w. `pump' to the resonator at a frequency of approx. 31.34 GHz, with no applied d.c. magnetic field, the WG (`signal') mode is energized through a three-level maser scheme. Preliminary measurements demonstrate a frequency stability (Allan deviation) of a few times 1e-14 for sampling intervals up to 100 s.Comment: REVTeX v.4, 3 pages, with a separate .bbl file and 3 .eps figure

    Comparison of 7T 16-channel Dual-row Transmit Arrays

    Get PDF
    We evaluated and compared the performance of an inductively decoupled and overlapped dual-row transmit arrays for MRI at 7T. For the evaluated designs, the coupling between adjacent elements in the same row was higher for the overlapped compared to the non-overlapped configuration. However the transmit efficiencies for the circular polarization mode of both coils were similar. For comparisons of array transmit performance, consideration of array-internal losses as well as reflected and radiated power is very important, because their sum can be as high as 55% of the total transmit power

    Creating traveling waves from standing waves from the gyrotropic paramagnetic properties of Fe3+^{3+} ions in a high-Q whispering gallery mode sapphire resonator

    Full text link
    We report observations of the gyrotropic change in magnetic susceptibility of the Fe3+^{3+} electron paramagnetic resonance at 12.037GHz (between spin states ∣1/2>|1/2> and ∣3/2>|3/2>) in sapphire with respect to applied magnetic field. Measurements were made by observing the response of the high-Q Whispering Gallery doublet (WGH±17,0,0_{\pm17,0,0}) in a Hemex sapphire resonator cooled to 5 K. The doublets initially existed as standing waves at zero field and were transformed to traveling waves due to the gyrotropic response.Comment: Accepted for publication in Phys. Rev.

    Neutron Correlations in the Decay of the First Excited State of 11Li

    Full text link
    The decay of unbound excited 11Li was measured after being populated by a two-proton removal from a 13B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the 9Li fragment and neutrons. A resonance at an excitation energy of ∌1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA Îł\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,pâ€Č)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA Îł\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,pâ€Č)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    Octupole strength in the neutron-rich calcium isotopes

    Full text link
    Low-lying excited states of the neutron-rich calcium isotopes 48−52^{48-52}Ca have been studied via γ\gamma-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA γ\gamma-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.Comment: 15 pages, 3 figure
    • 

    corecore