27,592 research outputs found
Quantum-classical transition for an analog of double-slit experiment in complex collisions: Dynamical decoherence in quantum many-body systems
We study coherent superpositions of clockwise and anti-clockwise rotating
intermediate complexes with overlapping resonances formed in bimolecular
chemical reactions. Disintegration of such complexes represents an analog of
famous double-slit experiment. The time for disappearance of the interference
fringes is estimated from heuristic arguments related to fingerprints of
chaotic dynamics of a classical counterpart of the coherently rotating complex.
Validity of this estimate is confirmed numerically for the H+D chemical
reaction. Thus we demonstrate the quantum--classical transition in temporal
behavior of highly excited quantum many-body systems in the absence of external
noise and coupling to an environment.Comment: 5 pages, 2 ps color figures. Accepted for publication in Phys. Rev.
Monotonicity results and bounds for the inverse hyperbolic sine
In this note, we present monotonicity results of a function involving to the
inverse hyperbolic sine. From these, we derive some inequalities for bounding
the inverse hyperbolic sine.Comment: 3 page
Epitaxial graphene on SiC(0001): More than just honeycombs
The potential of graphene to impact the development of the next generation of
electronics has renewed interest in its growth and structure. The
graphitization of hexagonal SiC surfaces provides a viable alternative for the
synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now
possible. Despite this recent progress, the exact nature of the graphene-SiC
interface and whether the graphene even has a semiconducting gap remain
controversial. Using scanning tunneling microscopy with functionalized tips and
density functional theory calculations, here we show that the interface is a
warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon
complexes periodically inserted into the honeycomb lattice. These defects
relieve the strain between the graphene layer and the SiC substrate, while
still retaining the three-fold coordination for each carbon atom. Moreover,
these defects break the six-fold symmetry of the honeycomb, thereby naturally
inducing a gap: the calculated band structure of the interface is
semiconducting and there are two localized states near K below the Fermi level,
explaining the photoemission and carbon core-level data. Nonlinear dispersion
and a 33 meV gap are found at the Dirac point for the next layer of graphene,
providing insights into the debate over the origin of the gap in epitaxial
graphene on SiC(0001). These results indicate that the interface of the
epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively
impacts the physical and electronic properties of the subsequent graphene
layers
Observation of Landau quantization and standing waves in HfSiS
Recently, HfSiS was found to be a new type of Dirac semimetal with a line of
Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are
also pronounced in this compound. Here we report a systematic study of HfSiS by
scanning tunneling microscopy/spectroscopy at low temperature and high magnetic
field. The Rashba-split surface states are characterized by measuring Landau
quantization and standing waves, which reveal a quasi-linear dispersive band
structure. First-principles calculations based on density-functional theory are
conducted and compared with the experimental results. Based on these
investigations, the properties of the Rashba-split surface states and their
interplay with defects and collective modes are discussed.Comment: 6 pages, 5 figure
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
A comparison of robust Mendelian randomization methods using summary data.
The number of Mendelian randomization (MR) analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. Since it is unlikely that all genetic variants will be valid instrumental variables, several robust methods have been proposed. We compare nine robust methods for MR based on summary data that can be implemented using standard statistical software. Methods were compared in three ways: by reviewing their theoretical properties, in an extensive simulation study, and in an empirical example. In the simulation study, the best method, judged by mean squared error was the contamination mixture method. This method had well-controlled Type 1 error rates with up to 50% invalid instruments across a range of scenarios. Other methods performed well according to different metrics. Outlier-robust methods had the narrowest confidence intervals in the empirical example. With isolated exceptions, all methods performed badly when over 50% of the variants were invalid instruments. Our recommendation for investigators is to perform a variety of robust methods that operate in different ways and rely on different assumptions for valid inferences to assess the reliability of MR analyses
Side-channel-free quantum key distribution
Quantum key distribution (QKD) offers the promise of absolutely secure
communications. However, proofs of absolute security often assume perfect
implementation from theory to experiment. Thus, existing systems may be prone
to insidious side-channel attacks that rely on flaws in experimental
implementation. Here we replace all real channels with virtual channels in a
QKD protocol, making the relevant detectors and settings inside private spaces
inaccessible while simultaneously acting as a Hilbert space filter to eliminate
side-channel attacks. By using a quantum memory we find that we are able to
bound the secret-key rate below by the entanglement-distillation rate computed
over the distributed states.Comment: Considering general quantum systems, we extended QKD to the presence
of an untrusted relay, whose measurement creates secret correlations in
remote stations (achievable rate lower-bounded by the coherent information).
This key ingredient, i.e., the use of a measurement-based untrusted relay,
has been called 'measurement-device independence' in another arXiv submission
(arXiv:1109.1473
- …