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Abstract

The number of Mendelian randomization (MR) analyses including large

numbers of genetic variants is rapidly increasing. This is due to the pro-

liferation of genome‐wide association studies, and the desire to obtain more

precise estimates of causal effects. Since it is unlikely that all genetic variants

will be valid instrumental variables, several robust methods have been pro-

posed. We compare nine robust methods for MR based on summary data that

can be implemented using standard statistical software. Methods were com-

pared in three ways: by reviewing their theoretical properties, in an extensive

simulation study, and in an empirical example. In the simulation study, the

best method, judged by mean squared error was the contamination mixture

method. This method had well‐controlled Type 1 error rates with up to 50%

invalid instruments across a range of scenarios. Other methods performed well

according to different metrics. Outlier‐robust methods had the narrowest

confidence intervals in the empirical example. With isolated exceptions, all

methods performed badly when over 50% of the variants were invalid instru-

ments. Our recommendation for investigators is to perform a variety of robust

methods that operate in different ways and rely on different assumptions for

valid inferences to assess the reliability of MR analyses.
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1 | INTRODUCTION

Mendelian randomization (MR) uses genetic variants as
instrumental variables (IV) to determine whether an ob-
servational association between a modifiable exposure (of-
ten also called the intermediate variable under study or risk
factor) and an outcome is consistent with a causal effect
(Davey Smith & Ebrahim, 2003; Smith & Ebrahim, 2004).
This approach is less vulnerable to traditional problems of
epidemiological studies such as confounding and reverse

causality. With the increasing availability of genome‐wide
association studies that find robust associations between
genetic variants and exposures of interest (Welter
et al., 2014; Zheng et al., 2017), the potential of this ap-
proach is rapidly evolving. A genetic variant is a valid IV if
(a) it is associated with the exposure, (b) it has no direct
effect on the outcome, and (c) there are no associations
between the variant and any potential confounders.

There has been much discussion on the potentials and
limitations of MR, as the IV assumptions cannot be fully
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tested (Davey Smith & Ebrahim, 2003; Glymour, Tchetgen
Tchetgen, & Robins, 2012; VanderWeele, Tchetgen,
Cornelis, & Kraft, 2014). Violation of the IV assumptions
can lead to invalid conclusions in applied investigations. In
practice, the exclusion restriction assumption that the pro-
posed instruments (genetic variants) should not have a di-
rect effect on the outcome of interest is debatable,
particularly if the biological roles of the genetic variants are
insufficiently understood (Glymour et al., 2012; von Hinke,
Smith, Lawlor, Propper, & Windmeijer, 2016).

Some genetic variants are associated with multiple traits
(Sivakumaran et al., 2011; Solovieff, Cotsapas, Lee, Purcell,
& Smoller, 2013). This is referred to as pleiotropy. There are
two types of pleiotropy. Vertical pleiotropy occurs when a
variant is directly associated with the exposure and another
trait on the same biological pathway. This does not lead to
violation of the IV assumptions provided the only causal
pathway from the genetic variant to the outcome passes via
the exposure. Horizontal pleiotropy occurs when the second
trait is on a different biological pathway, and so there may
exist different causal pathways from the variant to the
outcome. This would violate the exclusion restriction as-
sumption. To solve the problems that arise due to hor-
izontal pleiotropy, several robust methods for MR have
been developed that can provide reliable inferences when
some genetic variants violate the IV assumptions, or when
genetic variants violate the IV assumptions in a particular
way. To our knowledge, a comprehensive review and si-
mulation study to compare the statistical performance of
these different methods has not been performed.

To focus our simulation study and compare the most
relevant robust methods for applied practice, we concentrate
on methods that satisfy two criteria. First, the method re-
quires only summary data on estimates (beta‐coefficients
and standard errors) of genetic variant–exposure and genetic
variant–outcome associations. We exclude methods that
require individual participant data (Guo, Kang, TonyCai, &
Small, 2018; Jiang et al., 2017; Kang, Zhang, Cai, &
Small, 2016; Tchetgen Tchetgen, Sun, & Walter, 2017), and
those that require data on additional variants not associated
with the exposure (DiPrete, Burik, & Koellinger, 2018;
O'Connor & Price, 2018). This is because the sharing of
individual participant data is often impractical, so that many
empirical researchers only have access to summary data,
and for fairness, to ensure that all methods are using the
same information to make inferences. Second, the method
must be performed using standard statistical software
packages. We exclude methods requiring convergence
checks that cannot be easily automated for a simulation
study (Berzuini, Guo, Burgess, & Bernardinelli, 2018) or are
computationally infeasible for large numbers of variants in a
reasonable running time (Burgess, Zuber, Gkatzionis, &
Foley, 2018).

In this article, we review nine robust methods for MR
from a theoretical perspective, and evaluate their perfor-
mance in a simulation study set in a two‐sample summary
data setting. The methods differ in how they estimate a
causal effect of the exposure on the outcome, as well as in
the assumptions required for consistent estimation. We
consider the weighted median, mode‐based estimation
(MBE), MR‐Pleiotropy Residual Sum and Outlier (MR‐
PRESSO), MR‐Robust, MR‐Lasso, MR‐Egger, contamination
mixture, MR‐Mix, and MR‐RAPS methods. Some methods
take a summarized measure of the variant‐specific causal
estimates as the overall causal effect estimate (weighted
median, and MBE), whereas others remove or downweight
outliers (MR‐PRESSO, MR‐Lasso, and MR‐Robust), or at-
tempt to model the distribution of the estimates from invalid
IVs (MR‐Egger, contamination mixture, MR‐Mix, and MR‐
RAPS). We also consider the performance of the methods in
an empirical example to evaluate the causal effect of body
mass index (BMI) on coronary artery disease risk.

This paper is organized as follows. First, we give an
overview of the robust methods and compare their the-
oretical properties. Then, we introduce the simulation
framework and applied example to compare their prop-
erties in practice. Finally, we discuss the implications of
this study for applied practice.

2 | METHODS

2.1 | Modelling assumptions and
summary data

We consider a model as previously described by Palmer,
Thompson, Tobin, Sheehan, and Burton (2008) and
Bowden et al. (2017) for J genetic variants G G G, , …, J1 2

that are independent in their distributions, a modifiable
exposure X , an outcome variable Y , and a confounderU .
We assume that all relationships between variables are
linear and homogeneous without effect modification,
meaning that the same causal effect is estimated by any
valid IV (Didelez & Sheehan, 2007). A visual re-
presentation of the model is shown in Figure 1.

We assume that summary data are available on ge-
netic associations with the exposure (beta‐coefficient β̂Xj
and standard error σXj) and with the outcome (beta‐
coefficient β̂Yj and standard error σYj) for each variant Gj.

2.2 | Inverse‐variance weighted method

The causal effect of the exposure on the outcome can be
estimated using a single genetic variant Gj by the ratio
method
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The ratio estimate θ̂Rj is a consistent estimate of the
causal effect if variant Gj satisfies the IV assumptions
(Didelez & Sheehan, 2007). If the uncertainty in the
genetic association with the exposure is low, then the
standard error of the ratio estimate σRj can be
approximated as (Thomas, Lawlor, & Thompson,
2007)
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The individual ratio estimates can be combined to
obtain a single more efficient estimate. The optimally
efficient combination of the ratio estimates is referred
to as the inverse‐variance weighted (IVW) estimate
(Burgess, Butterworth, & Thompson, 2013):
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The IVW estimate is equal to the estimate from the two‐
stage least squares method that is performed using in-
dividual participant data (Burgess, Dudbridge, &
Thompson, 2016). It is a weighted mean of the ratio es-
timates, where the weights are the inverse‐variances of
the ratio estimates. The IVW estimate can also be ob-
tained by weighted regression of the genetic associations
with the outcome on the genetic associations with the
exposure

∼β θ β ε ε σˆ = ˆ + , (0, ).Y X j j Y
2

j j j
 (4)

However, the IVW method has a 0% breakdown
point, meaning that if only one genetic variant is not a
valid IV, then the estimator is typically biased (Bowden,
Davey Smith, Haycock, & Burgess, 2016). Bias will be
present unless the pleiotropic effects of genetic variants
average to zero (balanced pleiotropy) and the pleiotropic
effects are independent of the genetic variant–exposure
associations (see MR‐Egger method below; Bowden
et al., 2017). With the increasing number of variants used
in MR investigations, it is increasingly unlikely that all
variants are valid IVs. Hence, it is crucial to consider
robust estimation methods despite their lower statistical
efficiency (i.e., lower power to detect a causal effect).

We proceed to introduce the different robust methods
we consider in this study in three categories: consensus
methods, outlier‐robust methods, and modelling meth-
ods. A summary table comparing the methods is pre-
sented as Table 1.

2.3 | Consensus methods

A consensus method is one that takes its causal estimate
as a summary measure of the distribution of the ratio
estimates. The most straightforward consensus method is
the median method. Rather than taking a weighted mean
of the ratio estimates as in the IVW method, we take the
median of the ratio estimates. The median estimator is
consistent (i.e., unbiased in large samples) even if up to
50% of the variants are invalid (Bowden et al., 2016). We
consider a weighted version of the median method,
where the median is taken from a distribution of the ratio
estimates in which genetic variants with more precise
ratio estimates receive more weight. Here, an unbiased
estimate will be obtained if up to 50% of the weight comes
from variants that are valid IVs. We refer to this as the
“majority valid” assumption.

A related assumption is the “plurality valid” assump-
tion (Guo et al., 2018). In large samples, while ratio esti-
mates for all valid IVs should equal the true causal effect,
ratio estimates for invalid IVs will take different values.
The “plurality valid” assumption is that, out of all the
different values taken by ratio estimates in large samples
(we term these the ratio estimands), the true causal effect
is the value taken for the largest number of genetic var-
iants (i.e., the modal ratio estimand). For example, the
plurality assumption would be satisfied if only 40% of the
genetic variants are valid instruments, provided that out of
the remaining 60% invalid instruments, no larger group
with the same ratio estimand exists. This assumption is
also referred to as the Zero Modal Pleiotropy Assumption
(ZEMPA; Hartwig, Davey Smith, & Bowden, 2017).

FIGURE 1 Illustrative diagram showing the model assumed
for genetic variant Gj, with effect ϕj on the unobserved confounder
U , effect γj on exposure X , and direct effect αj on outcome Y . The
causal effect of the exposure on the outcome is θ. Dotted lines
represent possible ways the instrumental variable assumptions
could be violated
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This assumption is exploited by MBE method
(Hartwig et al., 2017). As no two ratio estimates will be
identical in finite samples, it is not possible to take the
mode of the ratio estimates directly. In the MBE
method, a normal density is drawn for each genetic
variant centered at its ratio estimate. The spread of this
density depends on a bandwidth parameter, and (for the
weighted version of the MBE method) the precision of
the ratio estimate. A smoothed density function is
then constructed by summing these normal densities.
The maximum of this distribution is the causal
estimate.

As these consensus methods take the median or mode
of the ratio estimate distribution as the causal estimate,
they are naturally robust to outliers, as the median and
mode of a distribution are unaffected by the magnitude of
extreme values. However, they are still influenced by
outliers, as these variants still contribute to determining
the location of the median or mode of a distribution.
These methods can also be sensitive to changes in the
ratio estimates for variants that contribute to the median
or mode, and to the addition and removal of variants
from the analysis. Additionally, the methods may not be

as efficient as those that base their estimates on all the
genetic variants.

2.4 | Outlier‐robust methods

Next, we present three outlier‐robust methods. These
methods either downweight or remove genetic variants
from the analysis that have outlying ratio estimates. They
provide consistent estimates under the same assumptions
as the IVW method for the set of genetic variants that are
not identified as outliers.

In MR‐PRESSO method (Verbanck, Chen, Neale, &
Do, 2018), the IVW method is implemented by regression
using all the genetic variants, and the residual sum of
squares (RSS) is calculated from the regression equation.
The RSS is a heterogeneity measure for the ratio esti-
mates. Then, the IVW method is performed omitting
each genetic variant from the analysis in turn. If the RSS
decreases substantially compared to a simulated expected
distribution, then that variant is removed from the ana-
lysis. This procedure is repeated until no further variants
are removed from the analysis. The causal estimate is

TABLE 1 Summary comparison of methods

Method Consistency assumption Strengths and/or weaknesses

Weighted median Majority valid Robust to outliers, sensitive to additional/removal of
genetic variants, may be less efficient

Mode‐based estimation Plurality valid Robust to outliers, sensitive to bandwidth parameter
and addition/removal of genetic variants, generally
conservative

MR‐PRESSO Outlier‐robust Removes outliers, efficient with valid IVs, very high
false positive rate with several invalid IVs

MR‐Robust Outlier‐robust Downweights outliers, efficient with valid IVs, high
false‐positive rate with several invalid IVs

MR‐Lasso Outlier‐robust Removes outliers, efficient with valid IVs, high false‐
positive rate with several invalid IVs

MR‐Egger InSIDE Sensitive to outliers, sensitive to violations of InSIDE
assumption, InSIDE assumption often not
plausible, may be less efficient

Contamination mixture Plurality valid Robust to outliers, sensitive to variance parameter and
addition/removal of genetic variants, less
conservative than MBE

MR‐Mix Plurality valid Robust to outliers, requires large numbers of genetic
variants, very high false‐positive rate in several
scenarios

MR‐RAPS Pleiotropic effects (except outliers) normally
distributed about zero

Downweights outliers, sensitive to violations of
balanced pleiotropy assumption

Abbreviations: InSIDE, Instrument Strength Independent of Direct Effect; IV, instrumental variable; MBE, mode‐based estimation; MR, Mendelian
randomization; PRESSO, Pleiotropy Residual Sum and Outlier; RAPS, Robust Adjusted Profile Score.
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then obtained by the IVW method using the remaining
genetic variants.

In MR‐Robust, the IVW method is performed by re-
gression, except that instead of using ordinary least
squares regression, MM‐estimation is used combined
with Tukey's biweight loss function (Burgess, Bowden,
Dudbridge, & Thompson, 2016). MM‐estimation provides
robustness against influential points and Tukey's loss
function provides robustness against outliers. Tukey's
loss function is a truncated quadratic function, meaning
that there is a limit in the degree to which an outlier
contributes to the analysis (Mosteller & Tukey, 1977).
This contrasts with the quadratic loss function used in
ordinary least squares regression, which is unbounded,
meaning that a single outlier can have an unlimited effect
on the IVW estimate.

In MR‐Lasso, the IVW regression model is augmented
by adding an intercept term for each genetic variant
(Burgess, Bowden, et al., 2016). The IVW estimate is the
value of θ that minimizes

∑σ β θ β( ˆ − ˆ ) .
j

J

Y Y X
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−2 2
j j j

(5)
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where λ is a tuning parameter. As the regression equa-
tion contains more parameters than there are genetic
variants, a lasso penalty term is added for identification
(Windmeijer, Farbmacher, Davies, & DaveySmith, 2016).
The intercept term θ j0 represents the direct (pleiotropic)
effect on the outcome, and should be zero for a valid IV,
but will be non‐zero for an invalid IV. The causal esti-
mate is then obtained by the IVW method using the ge-
netic variants that had θ = 0j0 in Equation (6). A
heterogeneity criterion is used to determine the value of
λ. Increasing λ means that more of the pleiotropy para-
meters equal zero and so the corresponding variants are
included in the analysis; we increase λ step‐by‐step until
one step before there is more heterogeneity in the ratio
estimates for variants included in the analysis than ex-
pected by chance alone.

The MR‐PRESSO and MR‐Lasso methods remove
variants from the analysis, whereas MR‐Robust down-
weights variants. These methods will be valuable when
there is a small number of genetic variants with hetero-
geneous ratio estimates, as they will be removed from the
analysis or heavily downweighted, and so will not influ-
ence the overall estimate. In such a case, these methods
are likely to be efficient, as they are based on the IVW

method. The methods are less likely to be valuable when
there is a larger number of genetic variants that are
pleiotropic, particularly if the pleiotropic effects are small
in magnitude, and when the average pleiotropic effect of
non‐outliers is not zero.

2.5 | Modelling methods

Finally, we present four methods that attempt to model
the distribution of estimates from invalid IVs or make a
specific assumption about the way in which the IV as-
sumptions are violated. The MR‐Egger method is per-
formed similarly to the IVW method, except that the
regression model contains an intercept term θ0:

∼β θ θ β ε ε σˆ = + ˆ + , (0, ).Y X j j Y0
2

j j j
 (7)

This differs from the MR‐Lasso method, as there is only
one intercept term, which represents the average pleio-
tropic effect. The MR‐Egger method gives consistent es-
timates of the causal effect under the Instrument
Strength Independent of Direct Effect (InSIDE) assump-
tion, which states that pleiotropic effects of genetic var-
iants must be uncorrelated with genetic variant–exposure
association. As the regression model is no longer sym-
metric to changes in the signs of the genetic association
estimates (which result from switching the reference and
effect alleles), we first reorientate the genetic associations
before performing the regression by fixing all genetic
associations with the exposure to be positive, and corre-
spondingly changing the signs of the genetic associations
with the outcome if necessary. The intercept in MR‐Egger
also provides a test of the IV assumptions. The intercept
will differ from zero when either the average pleiotropic
effect is not zero, or the InSIDE assumption is violated.
These two conditions (average pleiotropy of zero and
InSIDE assumption satisfied) are precisely the conditions
required for the IVW estimate to be unbiased.

The contamination mixture method assumes that
only some of the genetic variants are valid IVs (Burgess,
Foley, Allara, Staley, & Howson, 2020). We construct a
likelihood function from the ratio estimates. If a variant
is a valid instrument, then its ratio estimate is assumed to
be normally distributed about the true causal effect θ
with variance σR

2
j
. If a variant is not a valid instrument,

then its ratio estimate is assumed to be normally dis-
tributed about zero with variance ψ σ+ R

2 2
j
, where ψ2

represents the variance of the estimands from invalid IVs.
This parameter is specified by the analyst. We then
maximize the likelihood over different values of the
causal effect θ and different configurations of valid and
invalid IVs. Maximization is performed in linear time by
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first constructing a profile likelihood as a function of θ,
and then maximizing this function with respect to θ. The
value of θ that maximizes the profile likelihood is the
causal estimate.

The MR‐Mix method (Qi & Chatterjee, 2020) is si-
milar to the contamination mixture method, except that
rather than dividing the genetic variants into valid and
invalid IVs, the method divides variants into four cate-
gories: (a) variants that directly influence the exposure
only (valid instruments), and (b) variants that influence
the exposure and outcome, (c) that influence the outcome
only, and (d) that neither influence the exposure or
outcome (invalid instruments). This allows for more
flexibility in modelling genetic variants, although poten-
tially leads to more uncertainty in assigning genetic
variants to categories.

The MR‐Robust Adjusted Profile Score (RAPS; Zhao,
Wang, Bowden, & Small, 2018) method models the
pleiotropic effects of genetic variants directly using a
random‐effects distribution. The pleiotropic effects are
assumed to be normally distributed about zero with un-
known variance. Estimates are obtained using a profile‐
likelihood function for the causal effect and the variance
of the pleiotropic effect distribution. To provide further
robustness to outliers, either Tukey's biweight loss func-
tion or Huber's loss function (Mosteller & Tukey, 1977)
can be used.

Modelling methods are likely to be valuable when the
modelling assumptions are correct, but not when the
assumptions are incorrect. For example, the MR‐Egger
method requires the InSIDE assumption to be satisfied to
give a consistent estimate. The MR‐RAPS method is
likely to perform well when pleiotropic effects truly are
normally distributed about zero, but less well when they
are not. The MR‐Mix method is likely to require large
numbers of genetic variants to correct classify variants
into the different categories. The contamination mixture
method is less likely to be affected by modelling as-
sumptions as it does not make such strict assumptions,
but it is likely to be sensitive to specification of the var-
iance parameter.

2.6 | Simulation study

To compare the performance of these methods in a rea-
listic setting, we perform a simulation study. Full details
of the simulation study are given in the Supporting In-
formation Material.

For each participant i, we simulate data on J genetic
variants G G G, , …,i i iJ1 2 , a modifiable exposure Xi, an
outcome variable Yi , and a confounder Ui (assumed un-
known). The confounder is a linear function of the

genetic variants and an independent error term εi
U . The

effect of variant j on the confounder is represented by
coefficient ϕj (this is zero for a valid IV). The exposure is
linear in the genetic variants, the confounder and an
independent error term εi

X . The effect of variant j on the
exposure is represented by coefficient γj. The outcome is
linear in the genetic variants, exposure, confounders, and
an independent error term εi

Y . The effect of variant j on
the outcome is represented by coefficient αj (again, this is
zero for a valid IV). The effect of the exposure on the
outcome is represented by θ. The genetic variants are
modelled as single nucleotide polymorphisms (SNPs),
with a varying minor allele frequency mafj, and take
values 0, 1, or 2. The minor allele frequencies are drawn
from an uniform distribution. The error terms εi

U , εi
X , and

εi
Y each follow an independent normal distribution with
mean 0 and unit variance.

We can represent the model mathematically as

∑
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(8)

In brief, we consider three scenarios:

1. balanced pleiotropy, InSIDE satisfied—invalid IVs
have direct effects on the outcome generated from a
normal distribution centered at zero (for invalid in-
struments ∼α ϕ(0, 0.15), = 0j j );

2. directional pleiotropy, InSIDE satisfied—invalid IVs
have direct effects on the outcome generated from a
normal distribution centered away from zero (for in-
valid instruments ∼α ϕ(0.1, 0.075), = 0j j );

3. directional pleiotropy, InSIDE violated—invalid IVs have
direct effects on the outcome generated from a normal
distribution centered away from zero, and indirect effects
on the outcome via the confounder (for invalid instru-
ments ∼ ∼α ϕ(0.1, 0.075), (0, 0.1)j j  ).

We simulated data on J = 10, 30, and 100 genetic
variants. A portion of the genetic variants were invalid
IVs (30%, 50%, and 70%), and the direct effects of the
variants explain 10% of the variance in the exposure.
Summary genetic associations were calculated for the
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exposure and the outcome on nonoverlapping sets of
individuals, each consisting of 10,000 individuals (Hay-
cock et al., 2016). This situation is often referred to as
two‐sample summary data MR (Pierce & Burgess, 2013).
We considered situations with a null causal effect (θ = 0)
and a positive causal effect (θ = 0.2). In total, 10,000 data
sets were generated in each scenario.

Methods can be compared by many metrics, including
bias, empirical power, and standard deviation of esti-
mates. We use mean squared error, which is the sum of
bias squared plus variance, as the main criterion for
comparing methods, as this provides a compromise be-
tween bias and precision. However, the relative im-
portance of each metric will depend on the specific
features of the application.

2.7 | Empirical example: The effect of
BMI on coronary artery disease (CAD) risk

We also compare the methods in an empirical example
considering the effect of BMI on CAD risk. Since BMI is
influenced by several biological mechanisms (Monnereau,
Vogelezang, Kruithof, Jaddoe, & Felix, 2016), it is likely
that the exclusion restriction is not satisfied for all asso-
ciated genetic variants. Hence it is necessary to use robust
methods to analyse these data. Additionally, we consider

methods that detect outliers (MR‐Presso, MR‐Robust, MR‐
Lasso, contamination mixture, MR‐Mix, and MR‐RAPS),
and compare whether the same outliers are detected in
each of these methods.

We take 97 genome‐wide significant variants asso-
ciated with BMI from the GIANT consortium (Locke
et al., 2015). Associations with BMI are estimated in up to
339,224 participants from this consortium. Associations
with coronary artery disease risk are estimated in up to
60,801 CAD cases and 123,504 controls from the CAR-
DIoGRAMplusC4D Consortium (Nikpay et al., 2015).
Association estimates for CAD were available for 94 of
these variants.

The scatter plot of the genetic associations with BMI
and CAD risk is shown in Figure 2. While most variants
seem to suggest a harmful effect of increased BMI on
CAD risk, there is apparent heterogeneity in the IV es-
timates from each genetic variant individually, as evi-
denced by Cochran's Q test (Q‐statistic = 235.7, p< .001).
Even after removing the five outliers as judged by the
MR‐PRESSO method, which makes use of the hetero-
geneity statistic to identify outliers, we still reject the null
hypothesis of that the regression model (including an
intercept) fits the regression model with no additional
variability than would be expected by chance
(Q‐statistic = 125.9, p= .005). This suggests that some of
the variants violate the IV assumptions.

FIGURE 2 Scatter plot of genetic associations with body mass index (standard deviation units) and coronary artery disease risk (log
odds ratios) for 94 variants taken from the GIANT and CARDIoGRAMplusC4D consortia, respectively
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TABLE 2 Mean, median, SD of estimates, and Type 1 error/empirical power (%) with 10 genetic variants

Null casual effect: θ= 0

30% invalid 50% invalid 70% invalid

Method Mean Median SD
Type 1
error Mean Median SD

Type 1
error Mean Median SD

Type 1
error

Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted median 0.000 0.000 0.071 0.139 0.002 0.001 0.132 0.276 0.002 0.000 0.223 0.481

Mode‐based
estimation

0.000 0.000 0.101 0.111 0.002 0.000 0.151 0.268 0.002 0.001 0.224 0.619

MR‐PRESSO 0.000 0.000 0.111 0.122 −0.001 0.000 0.178 0.154 0.000 0.001 0.239 0.174

MR‐Robust 0.000 0.000 0.029 0.110 0.001 0.001 0.127 0.076 0.002 0.002 0.224 0.104

MR‐Lasso 0.001 0.000 0.048 0.042 0.000 0.000 0.088 0.076 0.004 0.001 0.183 0.156

MR‐Egger 0.007 0.004 0.419 0.093 0.005 0.008 0.563 0.097 0.006 0.014 0.684 0.098

Contamination
mixture

0.000 0.000 0.025 0.052 0.000 0.000 0.077 0.069 0.002 0.000 0.379 0.126

MR‐Mix 0.000 0.000 0.274 0.225 −0.001 0.000 0.431 0.292 0.000 0.000 0.561 0.356

MR‐RAPS 0.000 −0.001 0.106 0.039 0.001 0.000 0.172 0.062 0.001 0.000 0.226 0.083

Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted median 0.013 0.006 0.060 0.140 0.036 0.016 0.108 0.287 0.084 0.036 0.175 0.500

Mode‐based
estimation

0.007 0.001 0.081 0.114 0.020 0.006 0.122 0.264 0.059 0.030 0.180 0.585

MR‐PRESSO 0.028 0.013 0.079 0.132 0.069 0.031 0.133 0.168 0.122 0.071 0.182 0.214

MR‐Robust 0.003 0.002 0.031 0.106 0.042 0.023 0.105 0.084 0.115 0.094 0.169 0.152

MR‐Lasso 0.008 0.005 0.044 0.056 0.024 0.012 0.082 0.125 0.075 0.035 0.161 0.283

MR‐Egger 0.001 −0.006 0.329 0.093 0.000 −0.013 0.408 0.091 −0.005 −0.012 0.477 0.095

Contamination
mixture

0.000 0.001 0.025 0.059 0.003 0.001 0.056 0.078 0.060 0.006 0.281 0.137

MR‐Mix 0.045 0.016 0.200 0.247 0.084 0.023 0.301 0.331 0.144 0.050 0.399 0.443

MR‐RAPS 0.039 0.030 0.082 0.053 0.081 0.071 0.128 0.095 0.130 0.119 0.165 0.152

Scenario 3: Directional pleiotropy, InSIDE violated

Weighted median 0.022 0.011 0.071 0.179 0.073 0.030 0.137 0.384 0.135 0.080 0.188 0.599

Mode‐based
estimation

0.013 0.002 0.090 0.132 0.044 0.011 0.148 0.317 0.094 0.051 0.192 0.621

MR‐PRESSO 0.047 0.023 0.095 0.155 0.113 0.063 0.153 0.223 0.179 0.147 0.185 0.301

MR‐Robust 0.004 0.002 0.032 0.106 0.069 0.040 0.121 0.109 0.169 0.152 0.171 0.216

MR‐Lasso 0.013 0.008 0.050 0.073 0.050 0.024 0.108 0.203 0.122 0.067 0.180 0.415

MR‐Egger 0.049 0.024 0.326 0.098 0.066 0.042 0.411 0.097 0.048 0.034 0.464 0.096

Contamination
mixture

0.000 0.000 0.025 0.060 0.005 0.001 0.061 0.080 0.079 0.009 0.273 0.163

MR‐Mix 0.064 0.026 0.207 0.283 0.125 0.040 0.304 0.375 0.196 0.080 0.391 0.529

MR‐RAPS 0.062 0.050 0.091 0.085 0.132 0.118 0.132 0.182 0.188 0.180 0.160 0.262

Positive causal effect: θ = +0.2

30% invalid 50% invalid 70% invalid

Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted median 0.201 0.200 0.069 0.979 0.201 0.200 0.131 0.939 0.200 0.201 0.221 0.877

Mode‐based estimation 0.198 0.200 0.102 0.983 0.192 0.199 0.156 0.945 0.183 0.193 0.235 0.867

MR‐PRESSO 0.199 0.200 0.106 0.860 0.202 0.201 0.166 0.734 0.200 0.202 0.232 0.564

MR‐Robust 0.200 0.200 0.033 0.953 0.201 0.201 0.129 0.506 0.199 0.200 0.225 0.282

MR‐Lasso 0.200 0.200 0.052 0.962 0.201 0.201 0.091 0.906 0.198 0.200 0.189 0.774
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3 | RESULTS

3.1 | Simulation study

The results of the simulation study are presented in Table 2
(10 variants), Table 3 (30 variants), and Table 4 (100 var-
iants). For each scenario, we present the mean, median, and
standard deviation of estimates across simulations, and the
empirical Type 1 error rate (for a null causal effect) or em-
pirical power (for a positive causal effect) at a 95% confidence
level. The empirical Type 1 error rate and empirical power
are calculated as the proportion of simulated data sets where
zero was not included in the 95% confidence interval. The
mean squared error across simulations for the different
methods with a null causal effect is presented in Figure 3
(Scenario 2), and Figure 4 (Scenario 3) for 30 variants. The
corresponding plots for 10 variants (Figures S1 and S2) and
100 variants (Figures S3 and S4) were broadly similar.

Overall, judging by mean squared error, the con-
tamination mixture method performed best with 30% and
50% invalid variants. In some scenarios, other methods
had lower mean squared error with 70% invalid variants.
However, with some isolated exceptions, all the methods
performed badly with 70% invalid instruments. Coverage
for the contamination mixture method was around 10%
or less when there were up to 50% invalid variants. This
was also true for the MR‐Robust method, although that
method had slightly lower power to detect a causal effect
in some scenarios. Several other methods performed well
in particular scenarios.

Among consensus methods, estimates from the MBE
method were less biased than those from the weighted
median method, with lower Type 1 errors. The weighted
median method had slightly higher power to detect a
causal effect, although comparisons of power lose much
of their value when a method has inflated Type 1 error

TABLE 2 (Continued)

Positive causal effect: θ = +0.2

30% invalid 50% invalid 70% invalid

Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

MR‐Egger 0.199 0.201 0.442 0.166 0.199 0.199 0.549 0.122 0.197 0.193 0.660 0.113

Contamination mixture 0.200 0.200 0.028 0.997 0.202 0.201 0.074 0.959 0.228 0.204 0.399 0.704

MR‐Mix 0.210 0.203 0.242 0.562 0.219 0.205 0.370 0.612 0.224 0.210 0.522 0.644

MR‐RAPS 0.200 0.200 0.108 0.538 0.201 0.202 0.168 0.309 0.197 0.201 0.228 0.222

Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted median 0.214 0.207 0.060 0.991 0.240 0.216 0.114 0.978 0.285 0.242 0.175 0.952

Mode‐based estimation 0.205 0.201 0.081 0.983 0.219 0.204 0.129 0.961 0.248 0.226 0.180 0.917

MR‐PRESSO 0.225 0.213 0.072 0.945 0.267 0.232 0.129 0.849 0.319 0.274 0.177 0.729

MR‐Robust 0.204 0.203 0.034 0.954 0.244 0.225 0.109 0.646 0.315 0.301 0.168 0.555

MR‐Lasso 0.209 0.206 0.047 0.985 0.225 0.213 0.085 0.971 0.274 0.239 0.161 0.926

MR‐Egger 0.200 0.188 0.323 0.215 0.199 0.187 0.407 0.153 0.196 0.187 0.462 0.133

Contamination mixture 0.201 0.201 0.030 0.997 0.206 0.201 0.085 0.968 0.286 0.210 0.307 0.823

MR‐Mix 0.252 0.228 0.175 0.613 0.291 0.240 0.265 0.664 0.353 0.276 0.367 0.738

MR‐RAPS 0.238 0.229 0.080 0.825 0.285 0.275 0.127 0.675 0.329 0.322 0.164 0.595

Scenario 3: Directional pleiotropy, InSIDE violated

Weighted median 0.225 0.212 0.074 0.994 0.272 0.233 0.137 0.985 0.339 0.287 0.185 0.975

Mode‐based estimation 0.211 0.201 0.092 0.983 0.239 0.211 0.147 0.961 0.290 0.252 0.189 0.940

MR‐PRESSO 0.243 0.223 0.086 0.925 0.307 0.262 0.149 0.835 0.379 0.342 0.182 0.759

MR‐Robust 0.205 0.204 0.036 0.945 0.271 0.244 0.122 0.651 0.372 0.353 0.168 0.651

MR‐Lasso 0.216 0.210 0.053 0.991 0.250 0.226 0.109 0.981 0.326 0.274 0.179 0.964

MR‐Egger 0.248 0.225 0.330 0.245 0.266 0.242 0.408 0.183 0.251 0.236 0.458 0.155

Contamination mixture 0.201 0.201 0.029 0.996 0.209 0.202 0.082 0.970 0.317 0.217 0.318 0.850

MR‐Mix 0.274 0.240 0.180 0.654 0.327 0.260 0.260 0.713 0.405 0.319 0.357 0.788

MR‐RAPS 0.263 0.251 0.090 0.872 0.329 0.316 0.134 0.797 0.389 0.378 0.158 0.759

Abbreviations: InSIDE, Instrument Strength Independent of Direct Effect; MR, Mendelian randomization; PRESSO, Pleiotropy Residual Sum and Outlier;
RAPS, Robust Adjusted Profile Score; SD, standard deviation.
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TABLE 3 Mean, median, SD of estimates, and Type 1 error/empirical power (%) with 30 genetic variants

Null casual effect: θ= 0

30% invalid 50% invalid 70% invalid

Method Mean Median SD
Type 1
error Mean Median SD

Type 1
error Mean Median SD

Type 1
error

Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted median 0.000 0.000 0.033 0.085 −0.001 0.000 0.066 0.168 −0.002 −0.002 0.134 0.333

Mode‐based
estimation

0.000 0.000 0.029 0.052 0.000 0.000 0.063 0.127 0.000 −0.001 0.136 0.494

MR‐PRESSO 0.000 0.000 0.052 0.208 −0.001 0.000 0.091 0.276 −0.002 0.000 0.145 0.351

MR‐Robust 0.000 0.000 0.023 0.069 0.000 0.000 0.075 0.024 −0.001 −0.004 0.172 0.054

MR‐Lasso 0.000 −0.001 0.025 0.038 0.000 0.000 0.036 0.061 −0.001 0.000 0.081 0.111

MR‐Egger 0.004 0.003 0.319 0.068 0.006 0.002 0.400 0.073 −0.010 −0.008 0.464 0.074

Contamination
mixture

0.000 0.000 0.022 0.062 0.000 0.000 0.030 0.078 −0.002 0.001 0.177 0.127

MR‐Mix 0.000 0.000 0.141 0.052 0.000 0.000 0.215 0.053 0.002 0.000 0.321 0.036

MR‐RAPS −0.001 −0.001 0.077 0.019 0.000 −0.003 0.132 0.041 −0.002 −0.004 0.178 0.055

Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted median 0.011 0.009 0.031 0.100 0.031 0.021 0.066 0.235 0.083 0.048 0.127 0.438

Mode‐based
estimation

0.001 0.000 0.026 0.049 0.006 0.003 0.054 0.132 0.040 0.026 0.113 0.454

MR‐PRESSO 0.024 0.016 0.042 0.230 0.071 0.047 0.089 0.424 0.145 0.119 0.134 0.584

MR‐Robust 0.003 0.002 0.022 0.065 0.034 0.026 0.067 0.030 0.149 0.140 0.133 0.159

MR‐Lasso 0.004 0.003 0.023 0.058 0.014 0.011 0.039 0.135 0.061 0.039 0.097 0.340

MR‐Egger 0.004 −0.004 0.228 0.073 0.001 −0.005 0.285 0.074 −0.002 −0.008 0.328 0.071

Contamination
mixture

0.001 0.001 0.020 0.064 0.001 0.001 0.028 0.085 0.015 0.003 0.141 0.140

MR‐Mix 0.018 0.006 0.135 0.078 0.041 0.010 0.216 0.107 0.096 0.010 0.355 0.119

MR‐RAPS 0.046 0.042 0.058 0.051 0.110 0.105 0.099 0.160 0.179 0.175 0.129 0.273

Scenario 3: Directional pleiotropy, InSIDE violated

Weighted median 0.022 0.017 0.042 0.168 0.067 0.040 0.095 0.401 0.156 0.114 0.155 0.668

Mode‐based
estimation

0.002 0.001 0.033 0.057 0.016 0.006 0.073 0.172 0.077 0.048 0.140 0.531

MR‐PRESSO 0.050 0.035 0.061 0.397 0.132 0.108 0.114 0.653 0.232 0.216 0.146 0.816

MR‐Robust 0.004 0.004 0.023 0.052 0.059 0.045 0.080 0.041 0.224 0.216 0.136 0.335

MR‐Lasso 0.008 0.007 0.025 0.086 0.033 0.024 0.054 0.267 0.123 0.089 0.130 0.597

MR‐Egger 0.092 0.074 0.234 0.105 0.099 0.090 0.277 0.091 0.094 0.089 0.312 0.084

Contamination
mixture

0.000 0.001 0.020 0.062 0.002 0.002 0.029 0.093 0.026 0.005 0.156 0.166

MR‐Mix 0.029 0.010 0.141 0.095 0.056 0.010 0.220 0.139 0.125 0.020 0.327 0.154

MR‐RAPS 0.082 0.075 0.068 0.174 0.172 0.165 0.103 0.415 0.256 0.251 0.124 0.591

Positive causal effect: θ = +0.2

30% invalid 50% invalid 70% invalid

Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted mMedian 0.200 0.200 0.035 0.998 0.201 0.200 0.066 0.978 0.202 0.202 0.135 0.908

Mode‐based estimation 0.199 0.199 0.032 0.997 0.197 0.198 0.062 0.982 0.187 0.193 0.143 0.870

MR‐PRESSO 0.199 0.200 0.050 0.983 0.200 0.200 0.089 0.928 0.202 0.202 0.142 0.846

MR‐Robust 0.200 0.200 0.025 0.997 0.200 0.199 0.077 0.668 0.203 0.204 0.170 0.271
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rates. Performance of the MBE method improved as the
number of variants increased. Among outlier‐robust
methods, bias was greater for the MR‐Robust than the
MR‐Lasso method. The MR‐Lasso method generally had
the lower mean squared error when the invalidity was
50% or 70%, but MR‐Robust had the lower Type 1 error
rates. Performance of the MR‐Robust method was better
when there were at least 30 genetic variants. MR‐PRESSO
had biased estimates with inflated Type 1 error rates even
with 30% invalid variants, and performed particularly
badly as the number of variants increased.

The modelling methods performed well in some sce-
narios, but less well in others. This is unsurprising, as in
some scenarios, consistency assumptions for the methods
were satisfied, and in others they were not. The MR‐
Egger method performed well in terms of Type 1 error
rate in Scenarios 1 and 2, where the InSIDE assumption
was satisfied. Estimates from the method were generally

imprecise with low power. However, power in the MR‐
Egger method depends on the genetic associations with
the exposure varying substantially between variants,
which was not the case in the simulation study (Burgess
& Thompson, 2017). The contamination mixture method
performed well with 30% and 50% valid instruments, with
low bias and Type 1 error rates at or below 8% with 10
variants, 10% with 30 variants, and 11% with 100 variants.
The MR‐Mix method performed badly throughout, with
highly inflated Type 1 error rates in almost all scenarios
with less than 100 instruments and comparatively low
power to detect a causal effect. It performed slightly
better with more genetic variants, although its perfor-
mance was still worse than other methods. However, the
method performed much better in a simulation compar-
ison of methods performed by the authors of the MR‐Mix
method (Qi & Chatterjee, 2019), in which the data‐
generating model was more similar to the model assumed

TABLE 3 (Continued)

Positive causal effect: θ = +0.2

30% invalid 50% invalid 70% invalid

Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

MR‐Lasso 0.200 0.200 0.026 1.000 0.200 0.200 0.038 0.996 0.201 0.201 0.080 0.942

MR‐Egger 0.200 0.199 0.311 0.149 0.209 0.211 0.396 0.120 0.196 0.196 0.462 0.102

Contamination mixture 0.201 0.201 0.023 1.000 0.201 0.200 0.032 0.997 0.215 0.203 0.194 0.943

MR‐Mix 0.209 0.200 0.141 0.606 0.211 0.200 0.233 0.793 0.182 0.170 0.353 0.200

MR‐RAPS 0.199 0.199 0.075 0.644 0.201 0.202 0.131 0.345 0.202 0.204 0.177 0.231

Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted median 0.212 0.210 0.033 1.000 0.232 0.222 0.065 0.998 0.289 0.255 0.132 0.989

Mode‐based estimation 0.200 0.199 0.031 0.998 0.205 0.203 0.052 0.989 0.236 0.224 0.116 0.950

MR‐PRESSO 0.223 0.216 0.042 1.000 0.267 0.247 0.083 0.999 0.344 0.319 0.134 0.995

MR‐Robust 0.203 0.203 0.025 0.999 0.237 0.229 0.070 0.821 0.353 0.344 0.135 0.731

MR‐Lasso 0.204 0.204 0.025 1.000 0.216 0.213 0.041 1.000 0.266 0.244 0.101 0.994

MR‐Egger 0.202 0.194 0.222 0.217 0.197 0.188 0.277 0.150 0.204 0.197 0.331 0.126

Contamination mixture 0.201 0.201 0.022 1.000 0.203 0.203 0.034 0.999 0.234 0.206 0.193 0.969

MR‐Mix 0.230 0.210 0.141 0.461 0.263 0.220 0.232 0.518 0.328 0.230 0.378 0.502

MR‐RAPS 0.248 0.244 0.059 0.969 0.307 0.303 0.099 0.881 0.381 0.376 0.131 0.837

Scenario 3: Directional pleiotropy, InSIDE violated

Weighted median 0.225 0.219 0.045 1.000 0.270 0.244 0.096 1.000 0.361 0.320 0.158 0.998

Mode‐based estimation 0.202 0.201 0.039 0.995 0.215 0.206 0.072 0.986 0.270 0.245 0.137 0.963

MR‐PRESSO 0.247 0.234 0.058 1.000 0.326 0.302 0.108 1.000 0.429 0.415 0.146 0.999

MR‐Robust 0.206 0.205 0.026 0.997 0.265 0.251 0.084 0.781 0.427 0.419 0.137 0.838

MR‐Lasso 0.209 0.208 0.027 1.000 0.235 0.226 0.056 1.000 0.326 0.293 0.131 0.999

MR‐Egger 0.289 0.269 0.231 0.316 0.305 0.295 0.276 0.250 0.297 0.293 0.314 0.201

Contamination mixture 0.201 0.202 0.023 1.000 0.204 0.203 0.036 0.999 0.248 0.209 0.208 0.974

MR‐Mix 0.241 0.215 0.150 0.505 0.288 0.223 0.248 0.593 0.362 0.250 0.366 0.546

MR‐RAPS 0.281 0.274 0.068 0.990 0.371 0.365 0.102 0.976 0.459 0.454 0.125 0.974

Abbreviations: InSIDE, Instrument Strength Independent of Direct Effect; MR, Mendelian randomization; PRESSO, Pleiotropy Residual Sum and Outlier;
RAPS, Robust Adjusted Profile Score; SD, standard deviation.
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TABLE 4 Mean, median, SD of estimates, and Type 1 error/empirical power (%) with 100 genetic variants

Null casual effect: θ= 0

30% invalid 50% invalid 70% invalid

Method Mean Median SD
Type 1
error Mean Median SD

Type 1
error Mean Median SD

Type 1
error

Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted median 0.000 0.000 0.025 0.069 −0.001 0.000 0.041 0.124 0.000 0.000 0.077 0.234

Mode‐based
estimation

0.000 0.000 0.024 0.038 0.000 0.000 0.035 0.082 0.000 0.000 0.084 0.333

MR‐PRESSO 0.000 0.000 0.025 0.134 0.000 0.001 0.047 0.224 0.000 −0.001 0.083 0.313

MR‐Robust 0.000 0.000 0.020 0.052 0.000 0.001 0.053 0.024 0.000 −0.001 0.126 0.044

MR‐Lasso 0.000 0.000 0.019 0.042 0.000 0.000 0.029 0.072 0.000 0.000 0.055 0.120

MR‐Egger −0.001 −0.001 0.195 0.067 −0.001 0.000 0.252 0.069 −0.003 −0.005 0.296 0.065

Contamination
mixture

0.000 0.000 0.019 0.064 0.000 0.000 0.029 0.088 0.002 0.000 0.211 0.136

MR‐Mix 0.000 0.000 0.075 0.038 −0.001 0.000 0.072 0.024 0.000 0.000 0.058 0.000

MR‐RAPS 0.000 −0.001 0.053 0.016 −0.001 0.000 0.095 0.036 0.000 −0.003 0.133 0.052

Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted median 0.013 0.012 0.023 0.105 0.033 0.029 0.039 0.258 0.087 0.071 0.084 0.537

Mode‐based
estimation

0.000 0.000 0.020 0.037 0.004 0.003 0.030 0.089 0.034 0.030 0.067 0.351

MR‐PRESSO 0.022 0.018 0.026 0.294 0.071 0.062 0.056 0.628 0.162 0.150 0.096 0.856

MR‐Robust 0.004 0.004 0.018 0.051 0.042 0.038 0.047 0.040 0.193 0.189 0.100 0.425

MR‐Lasso 0.004 0.004 0.017 0.077 0.020 0.018 0.029 0.242 0.076 0.066 0.067 0.617

MR‐Egger 0.001 −0.003 0.143 0.062 −0.002 −0.005 0.180 0.059 0.003 0.001 0.210 0.058

Contamination
mixture

0.000 0.001 0.017 0.061 0.001 0.001 0.025 0.090 0.018 0.005 0.160 0.156

MR‐Mix 0.005 0.000 0.074 0.034 0.004 0.000 0.072 0.035 0.006 0.000 0.070 0.007

MR‐RAPS 0.058 0.056 0.042 0.142 0.140 0.138 0.072 0.435 0.233 0.232 0.097 0.663

Scenario 3: Directional pleiotropy, InSIDE violated

Weighted median 0.027 0.025 0.027 0.258 0.077 0.065 0.062 0.619 0.184 0.163 0.116 0.881

Mode‐based
estimation

0.001 0.001 0.021 0.042 0.010 0.008 0.035 0.120 0.065 0.054 0.087 0.465

MR‐PRESSO 0.053 0.047 0.040 0.658 0.152 0.142 0.079 0.943 0.276 0.270 0.103 0.993

MR‐Robust 0.007 0.007 0.019 0.054 0.078 0.071 0.059 0.080 0.292 0.289 0.099 0.805

MR‐Lasso 0.010 0.009 0.018 0.153 0.049 0.043 0.041 0.575 0.165 0.151 0.097 0.927

MR‐Egger 0.119 0.114 0.148 0.162 0.141 0.138 0.178 0.159 0.123 0.124 0.194 0.114

Contamination
mixture

0.001 0.001 0.017 0.069 0.003 0.003 0.026 0.107 0.021 0.009 0.135 0.199

MR‐Mix 0.007 0.000 0.073 0.037 0.008 0.000 0.070 0.034 0.007 0.000 0.068 0.006

MR‐RAPS 0.104 0.101 0.049 0.545 0.224 0.221 0.076 0.896 0.330 0.327 0.090 0.976

Positive causal effect: θ = +0.2

30% invalid 50% invalid 70% invalid

Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted median 0.200 0.200 0.028 1.000 0.201 0.201 0.043 0.996 0.201 0.200 0.078 0.939

Mode‐based estimation 0.199 0.199 0.025 1.000 0.199 0.199 0.036 0.998 0.192 0.192 0.085 0.908

MR‐PRESSO 0.200 0.200 0.026 1.000 0.201 0.200 0.047 0.993 0.201 0.200 0.083 0.934

MR‐Robust 0.200 0.200 0.021 1.000 0.201 0.202 0.055 0.896 0.200 0.200 0.126 0.373
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by the MR‐Mix method. The MR‐RAPS method per-
formed well in Scenario 1, where its consistency as-
sumption was satisfied, but less well in other scenarios
with inflated Type 1 error rates. Its performance also
worsened as more variants were included in the analysis.

3.2 | Empirical example: The effect of
BMI on coronary artery disease

Results from the empirical example are shown in Table 5.
All methods agree that there is a positive effect of BMI on
CAD risk, except for the MR‐Mix method which gives a
wide confidence interval that includes the null. The
narrowest confidence intervals are for the outlier‐robust
methods (MR‐Lasso, MR‐Robust, MR‐PRESSO), followed
by the modelling methods except MR‐Mix and MR‐Egger
(contamination mixture, MR‐RAPS), then the consensus

methods (weighted median, MBE), and finally MR‐Egger
and MR‐Mix.

While the methods that detect outliers varied in terms
of how lenient or strictly they identified outliers, they
agreed on the order of outliers (Table S3). The MR‐Robust
method was the most lenient, downweighting two variants
as outliers. Each subsequent method in order of strictness
identified all previously identified variants as outliers. MR‐
PRESSO excluded the two variants identified by MR‐Robust
plus an additional three variants. MR‐RAPS identified these
five plus an additional two variants. MR‐Lasso identified an
additional three variants, 10 in total. The contamination
mixture method identified an additional 14 variants,
24 in total. MR‐Mix identified an additional 21 variants,
45 in total. This suggests that any difference between results
from outlier‐robust methods are likely due to the strictness
of outlier detection, rather than due to intrinsic differences
in how the different methods select outliers. In several

TABLE 4 (Continued)

Positive causal effect: θ = +0.2

30% invalid 50% invalid 70% invalid

Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

MR‐Lasso 0.200 0.200 0.020 1.000 0.201 0.201 0.031 1.000 0.200 0.200 0.057 0.986

MR‐Egger 0.200 0.200 0.199 0.212 0.199 0.200 0.248 0.146 0.206 0.206 0.298 0.130

Contamination mixture 0.202 0.202 0.021 1.000 0.203 0.204 0.031 1.000 0.228 0.206 0.253 0.977

MR‐Mix 0.203 0.200 0.091 0.979 0.191 0.200 0.105 0.873 0.028 0.000 0.103 0.001

MR‐RAPS 0.201 0.201 0.054 0.880 0.201 0.199 0.095 0.504 0.201 0.202 0.133 0.332

Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted median 0.214 0.213 0.025 1.000 0.237 0.233 0.043 1.000 0.290 0.275 0.086 1.000

Mode‐based estimation 0.199 0.199 0.023 1.000 0.203 0.203 0.033 1.000 0.229 0.226 0.071 0.986

MR‐PRESSO 0.222 0.219 0.027 1.000 0.271 0.263 0.056 1.000 0.362 0.351 0.095 1.000

MR‐Robust 0.205 0.205 0.020 1.000 0.247 0.243 0.051 0.995 0.395 0.390 0.100 0.982

MR‐Lasso 0.205 0.205 0.019 1.000 0.223 0.220 0.032 1.000 0.281 0.270 0.071 1.000

MR‐Egger 0.201 0.198 0.144 0.325 0.203 0.199 0.182 0.229 0.201 0.199 0.213 0.187

Contamination mixture 0.202 0.202 0.019 1.000 0.204 0.204 0.028 1.000 0.256 0.211 0.271 0.995

MR‐Mix 0.208 0.200 0.094 0.641 0.211 0.200 0.098 0.899 0.055 0.000 0.136 0.061

MR‐RAPS 0.260 0.257 0.043 1.000 0.342 0.340 0.073 0.997 0.434 0.431 0.098 0.994

Scenario 3: Directional pleiotropy, InSIDE violated

Weighted median 0.230 0.228 0.029 1.000 0.282 0.271 0.065 1.000 0.389 0.369 0.116 1.000

Mode‐based estimation 0.201 0.200 0.024 1.000 0.210 0.208 0.039 0.999 0.263 0.252 0.088 0.988

MR‐PRESSO 0.252 0.246 0.039 1.000 0.349 0.339 0.077 1.000 0.474 0.468 0.100 1.000

MR‐Robust 0.209 0.209 0.022 1.000 0.287 0.280 0.063 0.986 0.495 0.492 0.097 0.999

MR‐Lasso 0.212 0.212 0.021 1.000 0.254 0.248 0.045 1.000 0.372 0.359 0.096 1.000

MR‐Egger 0.321 0.314 0.146 0.640 0.343 0.339 0.180 0.534 0.327 0.323 0.194 0.420

Contamination mixture 0.203 0.203 0.020 1.000 0.206 0.205 0.031 1.000 0.268 0.217 0.269 0.995

MR‐Mix 0.211 0.205 0.094 0.730 0.211 0.200 0.101 0.900 0.058 0.000 0.150 0.033

MR‐RAPS 0.306 0.303 0.050 1.000 0.426 0.424 0.077 1.000 0.531 0.529 0.088 1.000

Abbreviations: InSIDE, Instrument Strength Independent of Direct Effect; MR, Mendelian randomization; PRESSO, Pleiotropy Residual Sum and Outlier;
RAPS, Robust Adjusted Profile Score; SD, standard deviation.
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methods, the threshold at which outliers are detected can
be varied by the analyst (e.g., by varying the penalization
parameter λ in MR‐Lasso, or the significance threshold in
MR‐PRESSO). In practice, rather than performing different
outlier‐robust methods, it may be better to concentrate on
one method, but vary this threshold. In our example, some
of the variants that were the most pleiotropic in terms of
their associations with other measured risk factors were
only removed from the analysis by the MR‐Mix method
(Table S3).

4 | DISCUSSION

In this paper, we have provided a review of robust
methods for MR, focusing on methods that can be
performed using summary data and implemented
using standard statistical software. We have divided
methods into three categories: consensus methods,
outlier‐robust methods, and modelling methods.
Methods were compared in three ways: by their the-
oretical properties, including the assumptions re-
quired for the method to give a consistent estimate, in
an extensive simulation study, and in an empirical
investigation.

While the use of robust methods for MR analyses with
multiple genetic variants is highly recommended, it is not
practical or desirable to perform and report results from ev-
ery single robust method that has been proposed. Guidance
is therefore needed as to which robust methods should be
performed in practice. As an example, if an investigator
performed the MR‐PRESSO, MR‐Robust, and MR‐Lasso
methods, they would have assessed robustness of the result
to outliers, but they would not have not assessed other po-
tential violations of the IV assumptions. The categorization of
methods proposed here is not the only possible division of
methods, but we hope it is practically useful. For instance,
the contamination mixture and MR‐Mix methods make the
same “plurality valid” assumption as the MBE method, and
so could have been placed in the same category.

The similarity and ubiquity of the “outlier‐robust” and
“majority/plurality valid” assumptions should encourage
investigators to consider methods that make alternative
assumptions, such as the MR‐Egger method. While the
InSIDE assumption is often not plausible (Burgess &
Thompson, 2017), the MR‐Egger method and the intercept
test have value in providing a different route to testing the
validity of an MR study. Another potential choice is the
constrained IV method, which uses information on mea-
sured confounders to construct a composite IV that is not

FIGURE 3 Mean squared errors for the different methods in Scenario 2 (directional pleiotropy, InSIDE satisfied) with a null causal
effect for 30 variants. Note the vertical axis is on a logarithmic scale
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associated with these confounders (Jiang et al., 2017). This
method was not considered in the simulation study, as it
requires additional data on confounders and individual
participant data. Further methods development is needed to

develop robust methods for summary data that make dif-
ferent consistency assumptions.

We encourage researchers to perform robust methods
from different categories, and that make varied consistency
assumptions. For example, an investigator could perform the
weighted median method (majority valid assumption), the
contamination mixture method (plurality valid assumption),
and the MR‐Egger method (InSIDE assumption). If there are
a few clear outliers in the data, then an outlier‐robust
method such as MR‐PRESSO (best used with few very dis-
tinct outliers) or MR‐Robust could also be performed. While
we are hesitant to make a definitive recommendation as each
method has its own strengths and weaknesses, this set of
methods would be a reasonable compromise between per-
forming too few methods and not adequately assessing the
IV assumptions, and performing so many methods that
clarity is obscured. Another danger of the use of large
numbers of methods is the possibility to cherry‐pick results,
either by an investigator seeking to present their results in a
more positive light, or a reader picking the one method that
gives a different result (such as the MR‐Mix method in our
empirical example).

One important limitation of these methods is the
assumption that all valid IVs estimate the same causal
effect. Particularly for complex exposures such as BMI,
it is possible that different genetic variants have

FIGURE 4 Mean squared errors for the different methods in Scenario 3 (directional pleiotropy, InSIDE violated) with a null causal
effect for 30 variants. Note the vertical axis is on a logarithmic scale

TABLE 5 Estimates and 95% CI for the effect of BMI on
coronary artery disease risk from robust methods.

Method
Causal estimate
(95% CI) CI width

Weighted median 0.376 (0.206, 0.546) 0.340

Mode‐based estimation 0.382 (0.181, 0.583) 0.402

MR‐PRESSO 0.410 (0.309, 0.511) 0.202

MR‐Robust 0.425 (0.325, 0.526) 0.201

MR‐Lasso 0.442 (0.354, 0.530) 0.176

MR‐Egger 0.481 (0.165, 0.796) 0.631

(intercept) −0.003 (−0.011, 0.005)

Contamination mixture 0.490 (0.372, 0.602) 0.230

MR‐Mix 0.425 (−0.283, 1.133) 1.416

MR‐RAPS 0.390 (0.308, 0.546) 0.238

Note: Estimates represent log odds ratios for CAD risk per 1 kg/m2 increase
in BMI.
Abbreviations: BMI, body mass index; CI, confidence intervals; PRESSO,
Pleiotropy Residual Sum and Outlier; RAPS, Robust Adjusted Profile Score.
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different ratio estimates not because they are invalid
IVs, but because there are different ways of intervening
on BMI that lead to different effects on the outcome.
This can be remedied somewhat in methods based on
the IVW method by using a random‐effects model
(Bowden et al., 2017), or in the contamination mixture
method, where causal effects evidenced by different
sets of variants will lead to a multimodal likelihood
function, and potentially a confidence interval that
consists of more than one region.

In summary, while robust methods for MR do not
provide a perfect solution to violations of the IV
assumptions, they are able to detect such violations
and help investigators make more reliable causal
inferences. Investigators should perform a range of ro-
bust methods that operate in different ways and make
different assumptions to assess the robustness of findings
from a MR investigation.
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