55 research outputs found

    Vibrational Spectra of a Mechanosensitive Channel

    Get PDF
    We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the transmembrane helices, which is changing during the opening process. Linear dichroism cannot distinguish an intermediate structure from the closed structure, but sum-frequency generation can. In addition, we find that two-dimensional infrared spectroscopy can be used to distinguish all three investigated gating states of the mechanosensitive membrane channel.

    Assessment of penetration of Ascorbyl Tetraisopalmitate into biological membranes by molecular dynamics

    Get PDF
    The present work, involves the simulation of the transport of a vitamin C derivative, Ascorbyl Tetraisopalmitate (ATI), through human skin by molecular dynamics. Percutaneous absorption of the ATI molecule through the infundibulum, an important route of absorption into the hair follicle of the human skin, has been modeled and compared with the stratum corneum membrane. The comparative study was done, using molecular dynamics with Martini force field. In infundibulum, a single ATI molecule require more time to penetrate, and the data obtained suggested that a high concentration of ATI molecule accelerated the process of penetration. In conclusion, the ATI molecule was found to have more affinity towards the stratum corneum as compared towards the infundibulum and it followed a straight pathway to penetrate (until 600 ns of simulation). In infundibulum, it showed less affinity, more mobility and followed a lateral pathway. Thus, this work contributes to a better understanding of the different molecular interactions during percutaneous absorption of active molecules in these two different types of biological membranes.The authors acknowledge financial support from the Brazilian agencies CAPES, Finep and Fapesp (Project FINEP 01.10.0661-00, FAPESP 2011/13250-0, FAPESP 2013/17247-9, FAPESP 2014/05975-2, CAPES 88887068264/2014-00), of Institute of Research and Development, University of Vale Paraíba

    Polarizable Water Model for the Coarse-Grained MARTINI Force Field

    Get PDF
    Coarse-grained (CG) simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models

    Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli

    Get PDF
    Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies

    Improving Internal Peptide Dynamics in the Coarse-Grained MARTINI Model: Toward Large-Scale Simulations of Amyloid- and Elastin-like Peptides

    Get PDF
    We present an extension of the coarse-grained MARTINI model for proteins and apply this extension to amyloid- and elastin-like peptides. Atomistic simulations of tetrapeptides, octapeptides, and longer peptides in solution are used as a reference to parametrize a set of pseudodihedral potentials that describe the internal flexibility of MARTINI peptides. We assess the performance of the resulting model in reproducing various structural properties computed from atomistic trajectories of peptides in water. The addition of new dihedral angle potentials improves agreement with the contact maps computed from atomistic simulations significantly. We also address the question of which parameters derived from atomistic trajectories are transferable between different lengths of peptides. The modified coarse-grained model shows reasonable transferability of parameters for the amyloid- and elastin-like peptides. In addition, the improved coarse-grained model is also applied to investigate the self-assembly of β-sheet forming peptides on the microsecond time scale. The octapeptides SNNFGAIL and (GV)4 are used to examine peptide aggregation in different environments, in water, and at the water–octane interface. At the interface, peptide adsorption occurs rapidly, and peptides spontaneously aggregate in favor of stretched conformers resembling β-strands

    Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes

    Get PDF
    Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use computer simulations and optical microscopy to study the sorting of transmembrane helices into the liquid-disordered domains of phase-separated model membranes, irrespective of peptide–lipid hydrophobic mismatch. Free energy calculations show that the enthalpic contribution due to the packing of the lipids drives the lateral sorting of the helices. Hydrophobic mismatch regulates the clustering into either small dynamic or large static aggregates. These results reveal important molecular driving forces for the lateral organization and self-assembly of transmembrane helices in heterogeneous model membranes, with implications for the formation of functional protein complexes in real cells

    Antimicrobial Peptides Induce Growth of Phosphatidylglycerol Domains in a Model Bacterial Membrane

    Get PDF
    We performed microsecond long coarse-grained molecular dynamics simulations to elucidate the lateral structure and domain dynamics of a phosphatidylethanolamine (PE) / phosphatidylglycerol (PG) mixed bilayer (7/3), mimicking the inner membrane of gram-negative bacteria. Specifically, we address the effect of surface bound antimicrobial peptides (AMPs) on the lateral organization of the membrane. We find that, in the absence of the peptides, the minor PG fraction only forms small clusters, but that these clusters grow in size upon binding of the cationic AMPs. The presence of AMPs systematically affects the dynamics and induces long-range order in the structure of PG domains, stabilizing the separation between the two lipid fractions. Our results help understanding the initial stages of destabilization of cytoplasmic bacterial membranes below the critical peptide concentration necessary for disruption, and provide a possible explanation for the multimodal character of AMPs activity

    Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome.

    Get PDF
    Background: The low-density lipoprotein receptor (LDLR) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. Methods: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of datasets on gene expression and variants in human populations. Results: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in non-transfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in non-alcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and three rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared to overexpression of wild type RBM25, overexpression of the three rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. Conclusions: We identified a novel mechanism of post-transcriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels
    • …
    corecore