2,582 research outputs found

    Soft x-rays absorption and high-resolution powder x-ray diffraction study of superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy system

    Full text link
    We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy (0<x<0.4, 6.4<y<7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.Comment: 14 pages, 11 figures, accepted for publication in Journal of Physics and Chemistry of Solid

    Do comorbidities influence help-seeking for cancer alarm symptoms? A population-based survey in England

    Get PDF
    Background: We examined associations between different chronic morbidities and help-seeking for possible cancer symptoms. / Methods: Postal survey of individuals aged>50 years in England. Participants could report prior morbidities in respect of 12 pre-defined conditions. Among patients experiencing possible cancer symptoms we examined associations between specific morbidities and self-reported help-seeking (i.e. contacted versus not contacted a GP) for each alarm symptom using regression analyses. / Results: Among 2042 respondents (42% response rate), 936 (46%) recently experienced one of 14 possible cancer symptoms considered in our analysis. Of them, 80% reported one or more morbidities, most frequently hypertension/hypercholesterolemia (40%), osteomuscular (36%) and heart diseases (21%). After adjustment for socio-demographic characteristics, patients with hypertension/hypercholesterolemia were more likely to report help-seeking for possible cancer symptoms, such as unexplained cough (OR=2.0; 95%CI 1.1-3.5), pain (OR=2.2; 95%CI 1.0-4.5) and abdominal bloating (OR=2.3; 95%CI 1.1-4.8). Urinary morbidity was associated with increased help-seeking for abdominal bloating (OR=5.4; 95%CI 1.2-23.7) or rectal bleeding (OR=5.8; 95%CI 1.4-23.8). In contrast, heart problems reduced help-seeking for change in bowel habits (OR=0.4; 95%CI 0.2-1.0). / Conclusions: Comorbidities are common and may facilitate help-seeking for possible cancer symptoms, but associations vary for specific symptom-comorbidity pairs. The findings can contribute to the design of future cancer symptom awareness campaigns

    Singling out the effect of quenched disorder in the phase diagram of cuprates

    Get PDF
    We investigate the specific influence of structural disorder on the suppression of antiferromagnetic order and on the emergence of cuprate superconductivity. We single out pure disorder, by focusing on a series of Yz_{z}Eu1z_{1-z}Ba2_2Cu3_3O6+y_{6+y} samples at fixed oxygen content y=0.35y=0.35, in the range 0z10\le z\le 1. The gradual Y/Eu isovalent substitution smoothly drives the system through the Mott-insulator to superconductor transition from a full antiferromagnet with N\'eel transition TN=320T_N=320 K at z=0z=0 to a bulk superconductor with superconducting critical temperature Tc=18T_c=18 K at z=1z=1, YBa2_2Cu3_3O6.35_{6.35}. The electronic properties are finely tuned by gradual lattice deformations induced by the different cationic radii of the two lanthanides, inducing a continuous change of the basal Cu(1)-O chain length, as well as a controlled amount of disorder in the active Cu(2)O2_2 bilayers. We check that internal charge transfer from the basal to the active plane is entirely responsible for the doping of the latter and we show that superconductivity emerges with orthorhombicity. By comparing transition temperatures with those of the isoelectronic clean system we deterime the influence of pure structural disorder connected with the Y/Eu alloy.Comment: 10 pages 11 figures, submitted to Journal of Physics: Condensed Matter, Special Issue in memory of Prof. Sandro Massid

    A design methodology for an innovative racing mini motorcycle frame

    Get PDF
    Sports equipment design is a young and evolving engineering discipline focused on the best simultaneous optimization of user and product as a system. In motorsports, in particular, the final performance during a race depends on many parameters related to the vehicle, circuit, weather, and tyres and the personal feelings of every single driver. Top teams in high-tech categories can invest huge amounts of money in developing simulators, but such economic commitment is not sustainable for all those teams that operate in minor but very popular categories, such as karts or mini-motorcycles. In these fields, the most common design approach is trial and error on physical prototypes. Such an approach leads to high costs, long optimization times, poor innovation, and inefficient management of the design knowledge. The present paper proposes a driver centred methodology for the design of an innovative mini racing motorcycle frame. It consists of two main phases: the drivers’ feelings translation into engineering requirements and constraints, and the exploration of the design solution space. Expected effects of the application of the proposed methodology are an overall increase in the degree of innovation, time compression, and cost reduction during the development process, with a significant impact on the competitiveness of small racing teams in minor categories

    Effect of two gaps on the flux lattice internal field distribution: evidence of two length scales from muSR in Mg1-xAlxB2

    Full text link
    We have measured the transverse field muon spin precession in the flux lattice (FL) state of the two gap superconductor MgB2 and of the electron doped compounds Mg1-xAlxB2 in magnetic fields up to 2.8T. We show the effect of the two gaps on the internal field distribution in the FL, from which we determine two coherence length parameters and the doping dependence of the London penetration depth. This is an independent determination of the complex vortex structure already suggested by the STM observation of large vortices in a MgB2 single crystal. Our data agrees quantitatively with STM and we thus validate a new phenomenological model for the internal fields.Comment: now in press Phys. Rev. Lett., small modifications required by the edito

    Teaching English Language Arts Methods in the United States: A Review of the Research

    Get PDF
    This is the author's accepted manuscript. Copyright 2014 WileyWhat is the state of the English education methods course in the 21st century? Summarizing the research in English teacher education since the last major study (Smagorinsky & Whiting, 1995) of how English teachers are prepared, the authors review the state of the profession to examine trends in the field since the recent revision of the NCTE guidelines for teacher preparation, the redefinition of what constitutes methods coursework in and across programs, the rising numbers of culturally and linguistically diverse learners, the demands of assessment and accountability, and the integration of the field experience with content. The authors review research related to teaching reading strategies, integrating fieldwork with English education coursework, addressing standards in planning and teaching, meeting the needs of English language learners, and teaching with and about technology to determine how English teacher education is adapting to the demands of educating English teachers in the 21st century

    Evidence of orbital reconstruction at interfaces in La0.67Sr0.33MnO3 films

    Full text link
    Electronic properties of transition metal oxides at interfaces are influenced by strain, electric polarization and oxygen diffusion. Linear dichroism (LD) x-ray absorption, diffraction, transport and magnetization on thin La0.7Sr0.3MnO3 films, allow identification of a peculiar universal interface effect. We report the LD signature of preferential 3d-eg(3z2-r2) occupation at the interface, suppressing the double exchange mechanism. This surface orbital reconstruction is opposite of that favored by residual strain and independent of dipolar fields, chemical nature of the substrate and capping.Comment: 13 pages, 5 figure

    Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by Muon Spin Rotation

    Get PDF
    We have studied by muon spin resonance ({\mu}SR) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double period oscillations at short time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014)], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively associated with short range and long range ordered helices, coexist in a large temperature range below TN_{N} = 170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state and peculiar band structure of MnGe into account.Comment: 13 pages, 11 figure

    Experimental evidence of chemical-pressure-controlled superconductivity in cuprates

    Full text link
    X-ray absorption spectroscopy (XAS) and high resolution X-ray diffraction are combined to study the interplay between electronic and lattice structures in controlling the superconductivity in cuprates with a model charge-compensated CaxLa1-xBa1.75-xLa0.25+xCu3Oy (0<x<0.5, y=7.13) system. In spite of a large change in Tc, the doped holes, determined by the Cu L and O K XAS, hardly show any variation with the x. On the other hand, the CuO2 plaquette size shows a systematic change due to different size of substituted cations. The results provide a direct evidence for the chemical pressure being a key parameter for controlling the superconducting ground state of the cuprates.Comment: Accepted for publication in EP
    corecore