1,272 research outputs found
Dynamics of charge-displacement channeling in intense laser-plasma interactions
The dynamics of transient electric fields generated by the interaction of
high intensity laser pulses with underdense plasmas has been studied
experimentally with the proton projection imaging technique. The formation of a
charged channel, the propagation of its front edge and the late electric field
evolution have been characterised with high temporal and spatial resolution.
Particle-in-cell simulations and an electrostatic, ponderomotive model
reproduce the experimental features and trace them back to the ponderomotive
expulsion of electrons and the subsequent ion acceleration.Comment: 5 figures, accepted for publication in New Journal of Physic
Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses
The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼ 6 x1020 Wcm-2), ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30 MeV/nucleon); carbon ion energies obtained employing CP pulses were signicantly higher (∼2.5 times) than for irradiations employing linearly polarized (LP) pulses. Particle-in-cell simulations indicate that Radiation Pressure Acceleration becomes the dominant mechanism for the thinnest targets and CP pulses
TTRV30M oligomeric aggregates inhibit proliferation of renal progenitor cells but maintain their capacity to differentiate into podocytes in vitro
Publicado em: The Proceedings of the XIIIth International Symposium on Amyloidosis,
May 6-10, 2012, Groningen, The NetherlandsIn Familial Amyloidotic Polyneuropathy, the amyloid deposition of mutant transthyretin TTR V30M can lead to renal complications. An unexplored mechanism is the toxicity of oligomeric TTR aggregates. A subset of renal progenitor cells (RPC) in the adult human kidney can induce regeneration of podocytes and tubular structures of the nephron, which can be critical for preventing irreversible renal failure. We assessed whether RPC are vulnerable, in vitro, to TTRV30M oligomers. RPC proliferation was reduced by 16.3±9.7% and 32.6±6.3% after 48 and 72 hours, respectively, in the presence of the oligomers. However, oligomers did not induce apoptosis or alterations in cell cycle to any significant extent, and did not influence RPC differentiation into podocytes. From this first attempt, we can say that TTRV30M oligomers inhibit RPC proliferation but do not influence their capacity to differentiate into mature podocytes, and thus should not compromise tissue regeneration.FC
Effect of self-generated magnetic fields on fast-electron beam divergence in solid targets
The collimating effect of self-generated magnetic fields on fast-electron transport in solid aluminium targets irradiated by ultra-intense, picosecond laser pulses is investigated in this study. As the target thickness is varied in the range of 25 mu m to 1.4 mm, the maximum energies of protons accelerated from the rear surface are measured to infer changes in the fast-electron density and therefore the divergence of the fast-electron beam transported through the target. Purely ballistic spreading of the fast-electrons would result in a much faster decrease in the maximum proton energy with increasing target thickness than that measured. This implies that some degree of 'global' magnetic pinching of the fast-electrons occurs, particularly for thick (>400 mu m) targets. Numerical simulations of electron transport are in good agreement with the experimental data and show that the pinching effect of the magnetic field in thin targets is significantly reduced due to disruption of the field growth by refluxing fast-electrons
Identifying chemokines as therapeutic targets in renal disease: Lessons from antagonist studies and knockout mice
Chemokines, in concert with cytokines and adhesion molecules, play multiple roles in local and systemic immune responses. In the kidney, the temporal and spatial expression of chemokines correlates with local renal damage and accumulation of chemokine receptor-bearing leukocytes. Chemokines play important roles in leukocyte trafficking and blocking chemokines can effectively reduce renal leukocyte recruitment and subsequent renal damage. However, recent data indicate that blocking chemokine or chemokine receptor activity in renal disease may also exacerbate renal inflammation under certain conditions. An increasing amount of data indicates additional roles of chemokines in the regulation of innate and adaptive immune responses, which may adversively affect the outcome of interventional studies. This review summarizes available in vivo studies on the blockade of chemokines and chemokine receptors in kidney diseases, with a special focus on the therapeutic potential of anti-chemokine strategies, including potential side effects, in renal disease. Copyright (C) 2004 S. Karger AG, Basel
Focusing Dynamics of High-Energy Density, Laser-Driven Ion Beams
The dynamics of the focusing of laser-driven ion beams produced from concave solid targets was studied. Most of the ion beam energy is observed to converge at the center of the cylindrical targets with a spot diameter of 30 mu m, which can be very beneficial for applications requiring high beam energy densities. Also, unbalanced laser irradiation does not compromise the focusability of the beam. However, significant filamentation occurs during the focusing, potentially limiting the localization of the energy deposition region by these beams at focus. These effects could impact the applicability of such high-energy density beams for applications, e. g., in proton-driven fast ignition
Time of Flight based diagnostics for high energy laser driven ion beams
Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.)
Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses
In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration
- …
