916 research outputs found

    Three fully polarized fermions close to a p-wave Feshbach resonance

    Full text link
    We study the three-body problem for three atomic fermions, in the same spin state, experiencing a resonant interaction in the p-wave channel via a Feshbach resonance represented by a two-channel model. The rate of inelastic processes due to recombination to deeply bound dimers is then estimated from the three-body solution using a simple prescription. We obtain numerical and analytical predictions for most of the experimentally relevant quantities that can be extracted from the three-body solution: the existence of weakly bound trimers and their lifetime, the low-energy elastic and inelastic scattering properties of an atom on a weakly bound dimer (including the atom-dimer scattering length and scattering volume), and the recombination rates for three colliding atoms towards weakly bound and deeply bound dimers. The effect of "background" non-resonant interactions in the open channel of the two-channel model is also calculated and allows to determine which three-body quantities are `universal' and which on the contrary depend on the details of the model.Comment: 31 pages, 12 figure

    The quasiclassical theory of the Dirac equation with a scalar-vector interaction and its applications in the theory of heavy-light mesons

    Full text link
    We construct a relativistic potential quark model of DD, DsD_s, BB, and BsB_s mesons in which the light quark motion is described by the Dirac equation with a scalar-vector interaction and the heavy quark is considered a local source of the gluon field. The effective interquark interaction is described by a combination of the perturbative one-gluon exchange potential VCoul(r)=−ξ/rV_{\mathrm{Coul}}(r)=-\xi/r and the long-range Lorentz-scalar and Lorentz-vector linear potentials Sl.r.(r)=(1−λ)(σr+V0)S_{\mathrm{l.r.}}(r)=(1-\lambda)(\sigma r+V_0) and Vl.r.(r)=λ(σr+V0)V_{\mathrm{l.r.}}(r)=\lambda(\sigma r+V_0), where 0⩽λ<1/20\leqslant\lambda<1/2. Within the quasiclassical approximation, we obtain simple asymptotic formulas for the energy and mass spectra and for the mean radii of DD, DsD_s, BB, and BsB_s mesons, which ensure a high accuracy of calculations even for states with the radial quantum number nr∼1n_r\sim 1. We show that the fine structure of P-wave states in heavy-light mesons is primarily sensitive to the choice of two parameters: the strong-coupling constant αs\alpha_s and the coefficient λ\lambda of mixing of the long-range scalar and vector potentials Sl.r.(r)S_{\mathrm{l.r.}}(r) and Vl.r.(r)V_{\mathrm{l.r.}}(r). The quasiclassical formulas for asymptotic coefficients of wave function at zero and infinity are obtained.Comment: 22 pages, 6 figure

    Scaling of Dirac Fermions and the WKB approximation

    Full text link
    We discuss a new method for obtaining the WKB approximation to the Dirac equation with a scalar potential and a time-like vector potential. We use the WKB solutions to investigate the scaling behavior of a confining model for quark-hadron duality. In this model, a light quark is bound to a heavy di-quark by a linear scalar potential. Absorption of virtual photons promotes the quark to bound states. The analog of the parton model for this case is for a virtual photon to eject the bound, ground-state quark directly into free continuum states. We compare the scaling limits of the response functions for these two transitions

    DELTAS: Depth Estimation by Learning Triangulation And densification of Sparse points

    Full text link
    Multi-view stereo (MVS) is the golden mean between the accuracy of active depth sensing and the practicality of monocular depth estimation. Cost volume based approaches employing 3D convolutional neural networks (CNNs) have considerably improved the accuracy of MVS systems. However, this accuracy comes at a high computational cost which impedes practical adoption. Distinct from cost volume approaches, we propose an efficient depth estimation approach by first (a) detecting and evaluating descriptors for interest points, then (b) learning to match and triangulate a small set of interest points, and finally (c) densifying this sparse set of 3D points using CNNs. An end-to-end network efficiently performs all three steps within a deep learning framework and trained with intermediate 2D image and 3D geometric supervision, along with depth supervision. Crucially, our first step complements pose estimation using interest point detection and descriptor learning. We demonstrate state-of-the-art results on depth estimation with lower compute for different scene lengths. Furthermore, our method generalizes to newer environments and the descriptors output by our network compare favorably to strong baselines. Code is available at https://github.com/magicleap/DELTASComment: ECCV 202

    Direct Sparse Odometry with Rolling Shutter

    Full text link
    Neglecting the effects of rolling-shutter cameras for visual odometry (VO) severely degrades accuracy and robustness. In this paper, we propose a novel direct monocular VO method that incorporates a rolling-shutter model. Our approach extends direct sparse odometry which performs direct bundle adjustment of a set of recent keyframe poses and the depths of a sparse set of image points. We estimate the velocity at each keyframe and impose a constant-velocity prior for the optimization. In this way, we obtain a near real-time, accurate direct VO method. Our approach achieves improved results on challenging rolling-shutter sequences over state-of-the-art global-shutter VO

    Nucleon matrix elements and baryon masses in the Dirac orbital model

    Get PDF
    Using the expansion of the baryon wave function in a series of products of single quark bispinors (Dirac orbitals), the nonsinglet axial and tensor charges of a nucleon are calculated. The leading term yields gA=1.27g_A = 1.27 in good agreement with experiment. Calculation is essentially parameter-free and depends only on the strong coupling constant value αs\alpha_s. The importance of lower Dirac bispinor component, yielding 18% to the wave function normalization is stressed. As a check, the baryon decuplet masses in the formalism of this model are also computed using standard values of the string tension σ\sigma and the strange quark mass msm_s; the results being in a good agreement with experiment.Comment: 8 pages, 2 tables; LaTeX2

    Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized light

    Get PDF
    Relativistic tunnel ionization of atoms by intense, elliptically polarized light is considered. The relativistic version of the Landau-Dykhne formula is employed. The general analytical expression is obtained for the relativistic photoelectron spectra. The most probable angle of electron emission, the angular distribution near this angle, the position of the maximum and the width of the energy spectrum are calculated. In the weak field limit we obtain the familiar non-relativistic results. For the case of circular polarization our analytical results are in agreement with recent derivations of Krainov [V.P. Krainov, J. Phys. B, {\bf 32}, 1607 (1999)].Comment: 8 pages, 2 figures, accepted for publication in Journal of Physics

    Relativistic semiclassical approach in strong-field nonlinear photoionization

    Get PDF
    Nonlinear relativistic ionization phenomena induced by a strong laser radiation with elliptically polarization are considered. The starting point is the classical relativistic action for a free electron moving in the electromagnetic field created by a strong laser beam. The application of the relativistic action to the classical barrier-suppression ionization is briefly discussed. Further the relativistic version of the Landau-Dykhne formula is employed to consider the semiclassical sub-barrier ionization. Simple analytical expressions have been found for: (i) the rates of the strong-field nonlinear ionization including relativistic initial and final state effects; (ii) the most probable value of the components of the photoelectron final state momentum; (iii) the most probable direction of photoelectron emission and (iv) the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.

    Climatic and lacustrine morphometric controls of diatom paleoproductivity in a tropical Andean lake

    Get PDF
    15 páginas, 6 figuras, 1 tablaThe coupling of lake dynamics with catchment biogeochemistry is considered the key element controlling primary production in mountain lakes at time scales of a few decades to millennia, yet little is known on the impacts of the morphometry of lakes throughout their ontogeny. As Lake Chungará (Central Andean Altiplano, northern Chile) experienced long-term lake-level fluctuations that strongly modified its area:volume ratio, it is an ideal system for exploring the relative roles that long-term climatic shifts and lake morphometry play on biosiliceous lacustrine productivity. In this paper, we review previous data on the percent contents of total organic carbon, total inorganic carbon, total nitrogen, total biogenic silica, isotopic composition of organic matter, carbonates, and diatom frustules, as well as data on the abundance of the chlorophycean Botryococcus braunii in this lake for the period 12,400–1300 cal yr BP. We also include new data on organic carbon and biogenic silica mass accumulation rates and the diatom assemblage composition of an offshore core dated using 14C and U/Th. Biosiliceous productivity in Lake Chungará was influenced by shifts in allochthonous nutrient inputs related to variability in precipitation. Humid phases dated at approx. 12,400 to 10,000 and 9600 to 7400 cal yr BP coincide with periods of elevated productivity, whereas decreases in productivity were recorded during arid phases dated at approx. 10,000 to 9600 and 7400 to 3550 cal yr BP (Andean mid-Holocene Aridity Period). However, morphometry-related in–lake controls led to a lack of a linear response of productivity to precipitation variability. During the late Glacial to early Holocene, lowstands facilitated complete water column mixing, prompting episodic massive blooms of a large centric diatom, Cyclostephanos cf. andinus. Thus, moderate productivity could be maintained, regardless of aridity, by this phenomenon of morphometric eutrophy during the early history of the lake. The subsequent net increase in lake level introduced modifications in the area of the epilimnion sediments versus the total volume of the epilimnion, preventing complete overturn. Surpassing a certain depth threshold at approx. 8300 cal yr BP caused cessation of the morphometric eutrophy conditions associated with Cyclostephanos cf. andinus superblooms. After 7300 cal yr BP, the lake experienced a decrease in biosiliceous productivity and a change of state that involved a stronger dependence on precipitation variability, with a lesser contribution of diatoms to the total primary productivity. Our results show that the interpretation of lacustrine paleoproductivity records as paleoclimatic archives needs to take into account the effects of changes in the epilimnion sediment area to epilimnion volume ratio in association with lake ontogenyThe Spanish Ministry of Science and Innovation funded this research through the projects ANDESTER (BTE2001-3225), Complementary Action (BTE2001-5257-E), LAVOLTER (CGL2004-00683/BTE), GEOBILA (CGL2007-60932/BTE) and CONSOLIDER-Ingenio 2010 GRACCIE (CSD2007-00067)Peer reviewe
    • …
    corecore