822 research outputs found

    Computational polarimetric microwave imaging

    Get PDF
    We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target---often applied in microwave computational imaging schemes---is thus extended to retrieve the susceptibility tensors, and hence providing additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure

    Amplitude Modulation and Relaxation-Oscillation of Counterpropagating Rolls within a Broken-Symmetry Laser-Induced Electroconvection Strip

    Full text link
    We report a liquid-crystal pattern-formation experiment in which we break the lateral (translational) symmetry of a nematic medium with a laser-induced thermal gradient. The work is motivated by an improved measurement (reported here) of the temperature dependence of the electroconvection threshold voltage in planar-nematic 4-methoxybenzylidene-4-butylaniline (MBBA). In contrast with other broken-symmetry-pattern studies that report a uniform drift, we observe a strip of counterpropagating rolls that collide at a sink point, and a strong temporally periodic amplitude modulation within a width of 3-4 rolls about the sink point. The time dependence of the amplitude at a fixed position is periodic but displays a nonsinusoidal relaxation-oscillation profile. After reporting experimental results based on spacetime contours and wavenumber profiles, along with a measurement of the change in the drift frequency with applied voltage at a fixed control parameter, we propose some potential guidelines for a theoretical model based on saddle-point solutions for Eckhaus-unstable states and coupled complex Ginzburg-Landau equations. Published in PRE 73, 036317 (2006).Comment: Published in Physical Review E in March 200

    Karhunen-Lo`eve Decomposition of Extensive Chaos

    Full text link
    We show that the number of KLD (Karhunen-Lo`eve decomposition) modes D_KLD(f) needed to capture a fraction f of the total variance of an extensively chaotic state scales extensively with subsystem volume V. This allows a correlation length xi_KLD(f) to be defined that is easily calculated from spatially localized data. We show that xi_KLD(f) has a parametric dependence similar to that of the dimension correlation length and demonstrate that this length can be used to characterize high-dimensional inhomogeneous spatiotemporal chaos.Comment: 12 pages including 4 figures, uses REVTeX macros. To appear in Phys. Rev. Let

    The Catechol-O-Methyltransferase (COMT) val158met Polymorphism Affects Brain Responses to Repeated Painful Stimuli

    Get PDF
    Despite the explosion of interest in the genetic underpinnings of individual differences in pain sensitivity, conflicting findings have emerged for most of the identified "pain genes". Perhaps the prime example of this inconsistency is represented by catechol-O-methyltransferase (COMT), as its substantial association to pain sensitivity has been reported in various studies, but rejected in several others. In line with findings from behavioral studies, we hypothesized that the effect of COMT on pain processing would become apparent only when the pain system was adequately challenged (i.e., after repeated pain stimulation). In the present study, we used functional Magnetic Resonance Imaging (fMRI) to investigate the brain response to heat pain stimuli in 54 subjects genotyped for the common COMT val158met polymorphism (val/val = n 22, val/met = n 20, met/met = n 12). Met/met subjects exhibited stronger pain-related fMRI signals than val/val in several brain structures, including the periaqueductal gray matter, lingual gyrus, cerebellum, hippocampal formation and precuneus. These effects were observed only for high intensity pain stimuli after repeated administration. In spite of our relatively small sample size, our results suggest that COMT appears to affect pain processing. Our data demonstrate that the effect of COMT on pain processing can be detected in presence of 1) a sufficiently robust challenge to the pain system to detect a genotype effect, and/or 2) the recruitment of pain-dampening compensatory mechanisms by the putatively more pain sensitive met homozygotes. These findings may help explain the inconsistencies in reported findings of the impact of COMT in pain regulation.United States. National Institutes of Health (R01AT005280)United States. National Institutes of Health (R21AT00949)United States. National Institutes of Health (KO1AT003883)United States. National Institutes of Health (R21AT004497)National Center for Complementary and Alternative Medicine (U.S.) (PO1-AT002048)United States. National Institutes of Health (M01-RR-01066)United States. National Institutes of Health (UL1 RR025758-01)United States. National Institutes of Health (P41RR14075)United States. National Institutes of Health (DE-FG03-99ER62764)Swedish Society for Medical Researc

    A Longitudinal Study of the Reliability of Acupuncture Deqi Sensations in Knee Osteoarthritis

    Get PDF
    Deqi is one of the core concepts in acupuncture theory and encompasses a range of sensations. In this study, we used the MGH Acupuncture Sensation Scale (MASS) to measure and assess the reliability of the sensations evoked by acupuncture needle stimulation in a longitudinal clinical trial on knee osteoarthritis (OA) patients. The Knee injury and Osteoarthritis Outcome Score (KOOS) was used as the clinical outcome. Thirty OA patients were randomized into one of three groups (high dose, low dose, and sham acupuncture) for 4 weeks. We found that, compared with sham acupuncture, real acupuncture (combining high and low doses) produced significant improvement in knee pain (P = .025) and function in sport (P = .049). Intraclass correlation analysis showed that patients reliably rated 11 of the 12 acupuncture sensations listed on the MASS and that heaviness was rated most consistently. Overall perceived sensation (MASS Index) (P = .014), ratings of soreness (P = .002), and aching (P = .002) differed significantly across acupuncture groups. Compared to sham acupuncture, real acupuncture reliably evoked stronger deqi sensations and led to better clinical outcomes when measured in a chronic pain population. Our findings highlight the MASS as a useful tool for measuring deqi in acupuncture research

    Particle dynamics in sheared granular matter

    Get PDF
    The particle dynamics and shear forces of granular matter in a Couette geometry are determined experimentally. The normalized tangential velocity V(y)V(y) declines strongly with distance yy from the moving wall, independent of the shear rate and of the shear dynamics. Local RMS velocity fluctuations δV(y)\delta V(y) scale with the local velocity gradient to the power 0.4±0.050.4 \pm 0.05. These results agree with a locally Newtonian, continuum model, where the granular medium is assumed to behave as a liquid with a local temperature δV(y)2\delta V(y)^2 and density dependent viscosity

    Dynamic scaling and quasi-ordered states in the two dimensional Swift-Hohenberg equation

    Full text link
    The process of pattern formation in the two dimensional Swift-Hohenberg equation is examined through numerical and analytic methods. Dynamic scaling relationships are developed for the collective ordering of convective rolls in the limit of infinite aspect ratio. The stationary solutions are shown to be strongly influenced by the strength of noise. Stationary states for small and large noise strengths appear to be quasi-ordered and disordered respectively. The dynamics of ordering from an initially inhomogeneous state is very slow in the former case and fast in the latter. Both numerical and analytic calculations indicate that the slow dynamics can be characterized by a simple scaling relationship, with a characteristic dynamic exponent of 1/41/4 in the intermediate time regime
    • …
    corecore