4,159 research outputs found

    Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics

    Get PDF
    Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as "Bridging Platform". This transfer to "Bridging Platform" from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit

    Inkjet printed metal insulator semiconductor (MIS) diodes for organic and flexible electronic application

    Get PDF
    All inkjet printed rectifying diodes based on a metal-insulator-semiconductor (MIS) layer stack are presented. The rectifying properties were optimized by careful selection of the insulator interlayer thickness and the layout structure. The different diode architectures based on the following materials are investigated: (1) silver/ poly (methylmethacrylate-methacrylic acid)/ polytriarylamine/ silver, (2) silver/ polytriarylamine/ poly (methylmethacrylate-methacrylic acid)/ silver, and (3) silver/ poly (methylmethacrylate-methacrylic acid)/ poly-triarylamine/ poly(3,4-ethylenedioxythiophene) poly (styrenesulfonate). The MIS diodes show an averaged rectification ratio of 200 and reasonable forward current density reaching 40 mA cm -2. They are suitable for a number of applications in flexible printed organic electronics.EU [287682

    INTEGRAL timing and localization performance

    Full text link
    In this letter we report on the accuracy of the attitude, misalignment, orbit and time correlation which are used to perform scientific analyses of the INTEGRAL data. The boresight attitude during science pointings has an accuracy of 3 arcsec. At the center of the field, the misalignments have been calibrated leading to a location accuracy of 4 to 40 arcsec for the different instruments. The spacecraft position is known within 10 meters. The relative timing between instruments could be reconstructed within 10 microsec and the absolute timing within 40 microsec.Comment: 5 pages, 2 figures, accepted for publication in A+A letters, INTEGRAL special issu

    Cardiological health in patients with schizophrenia. A prospective cohort study

    Get PDF
    INTRODUCTION: Patients with schizophrenia have a four-fold increased all-cause and a doubled cardiovascular mortality rate as compared to the general population. OBJECTIVES: The study overall investigates the point-prevalence and prospective changes in cardiovascular risk factors in patients with schizophrenia, with baseline demographics of participants presented here. METHODS: A prospective study of patients diagnosed with schizophrenia divided into two subpopulations consisting of newly diagnosed (≤2 years from baseline in study (group A)) or chronic (diagnosed ≥10 years from baseline in study (group B)). RESULTS: A total of 199 patients (57 diagnosed ≤2 years preceding baseline and 142 diagnosed ≥10 years ago) were included. Group A had been diagnosed for an average of 1.13±0.58 years and 21.19±7.62 years in group B. The majority (n=135 (67.8%)) were diagnosed with paranoid schizophrenia. At baseline PANSS total (median[Q1;Q3]) for group A was 61.0[51.0;76.0] and 60.0[48.0;76.0] for group B, with PANNS Positive being 17.0[13.0;20.0] and 15.0[12;19], PANSS Negative being 16.0[11.0;20.0] and 14.5[10.0;20.0], and PANSS General being 28.0[22.0;35.0] and30.0 [25.0;37.0], respectively. No difference in Clinical Global Impression was observed between groups ((median[Q1;Q3): 4.0[3.0;4.0] in both groups). Lastly, global assessment of function was similar between groups ((median[Q1;Q3): group A symptom: 38.5[37.0;46.0] and group B 41.0[37.0;52.0], and with function being 48.0[44.5;53.5] in group A and 45.5[41.0;53.0] in group B). CONCLUSIONS: Prospective studies investigating prevalence of and prospective changes in cardiovascular risk in patients with schizophrenia are essential to understand the increased all-cause and cardiovascular specific mortality. Demographic descriptions of participants are essential to estimate generalizability in different treatment settings. DISCLOSURE: No significant relationships

    Field theory for a reaction-diffusion model of quasispecies dynamics

    Get PDF
    RNA viruses are known to replicate with extremely high mutation rates. These rates are actually close to the so-called error threshold. This threshold is in fact a critical point beyond which genetic information is lost through a second-order phase transition, which has been dubbed the ``error catastrophe.'' Here we explore this phenomenon using a field theory approximation to the spatially extended Swetina-Schuster quasispecies model [J. Swetina and P. Schuster, Biophys. Chem. {\bf 16}, 329 (1982)], a single-sharp-peak landscape. In analogy with standard absorbing-state phase transitions, we develop a reaction-diffusion model whose discrete rules mimic the Swetina-Schuster model. The field theory representation of the reaction-diffusion system is constructed. The proposed field theory belongs to the same universality class than a conserved reaction-diffusion model previously proposed [F. van Wijland {\em et al.}, Physica A {\bf 251}, 179 (1998)]. From the field theory, we obtain the full set of exponents that characterize the critical behavior at the error threshold. Our results present the error catastrophe from a new point of view and suggest that spatial degrees of freedom can modify several mean field predictions previously considered, leading to the definition of characteristic exponents that could be experimentally measurable.Comment: 13 page

    Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data

    Get PDF
    The Eurasian badger ( Meles meles ) is a facultatively social carnivore that shows only rudimentary co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence and limited genetic data have suggested that more than one female may breed in a social group. We combine pregnancy detection by ultrasound and microsatellite locus scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to demonstrate that multiple females reproduce within a social group. We found that at least three of seven potential mothers reproduced in a group that contained 11 reproductive age females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger

    Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results

    Get PDF
    We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include

    Effect of electron-withdrawing substituents on the electrophilicity of carbonyl carbons

    Get PDF
    IndexaciĂłn: ScopusThe substituent effects on the carbonyl carbon atom for a series of twelve substituted phenyl acetates have been rationalized using a global electrophilicity index. This index is linearly correlated with the experimental reaction rate coefficients. We found that, in contrast to the proposed interpretation based on experimental 13C NMR chemical shifts and ground state destabilization calculations, the electrophilicity of carbonyl compounds increases due to the effect promoted by electron-withdrawing groups in these systems.https://www.sciencedirect.com/science/article/pii/S0040402004018046?via%3Dihu
    • …
    corecore