80 research outputs found

    Effect of intra-ply voids on the homogenized behavior of a ply in multidirectional laminates

    Get PDF
    This work focuses on the effect of intra-ply voids on the homogenized nonlinear behavior of a ply in multidirectional composites. Voids were modeled explicitly on the fiber scale and linked to the ply-scale by the recently developed two-scale framework which couples Classical Laminate Theory on the macro-scale with Finite Element analysis on the micro-scale. Laminates [+/- 45](2s) and [+/- 67.5](2s) were used as validation cases. The computed homogenized behavior of plies with and without voids for each laminate were compared against existing experimental data on manufactured plates. The nonlinearity of the homogenized stress-strain curves of all models is in a good agreement with experiments up to 1% of applied deformation for a laminate [+/- 45](2s) and up to 0.4% for a laminate [+/- 67.5](2s). The effect of voids was assessed only virtually and it is shown that 4% of void content decreases the ply strength by 30%, transversal Young's and shear moduli by around 10% and 8% respectively, whereas longitudinal stiffness is only slightly affected by the presence of voids. This work is the first step towards automatization of the virtual identification of the complete set of damage-plasticity parameters for the LMT-Cachan damage model accounting for the presence of intra-ply voids

    Damage identification of prepreg composites subject to accelerated fatigue tests

    Get PDF
    The fatigue behavior of composite materials under time-dependent loading is investigated. Fatigue is induced in test beams using an electro-magnetic shaker. The test beams made of prepreg composite materials with a layup [(±45)2]S before and after fatigue loading are used as a case study for the proposed method. The averaged stiffness properties of the test specimen are monitored during the fatigue cycles by measuring the first natural frequency. The first bending mode shapes of the test beams are measured using a laser scanning vibrometer at selected fatigue stages. Based on this modal information, the (reduced) bending stiffness distribution of the test beam is identified using an inverse method

    Homozygous carriers of the TCF7L2 rs7903146 T-allele show altered postprandial response in triglycerides and triglyceride-rich lipoproteins

    Get PDF
    The TCF7L2 rs7903146 T-allele shows the strongest association with type 2 diabetes (T2D) among common gene variants. The aim of this study was to assess circulating levels of metabolites following a meal test in individuals carrying the high risk rs790346 TT genotype (cases) and low-risk CC genotype (controls). Sixty-two men were recruited based on TCF7L2 genotype, 31 were TT carriers and 31 were age- and BMI-matched CC carriers. All participants consumed a test meal after 12 hours of fasting. Metabolites were measured using proton nuclear magnetic resonance (NMR) spectroscopy. Metabolomic profiling of TCF7L2 carriers were performed for 141 lipid estimates. TT carriers had lower fasting levels of L-VLDL-L (total lipids in large very low density lipoproteins, p = 0.045), L-VLDL-CE (cholesterol esters in large VLDL, p = 0.03), and L-VLDL-C (total cholesterol in large VLDL, p = 0.045) compared to CC carriers. Additionally, TT carriers had lower postprandial levels of total triglycerides (TG) (q = 0.03), VLDL-TG (q = 0.05, including medium, small and extra small, q = 0.048, q = 0.0009, q = 0.04, respectively), HDL-TG (triglycerides in high density lipoproteins q = 0.037) and S-HDL-TG (q = 0.00003). In conclusion, TT carriers show altered postprandial triglyceride response, mainly influencing VLDL and HDL subclasses suggesting a genotype-mediated effect on hepatic lipid regulation

    Interactions between magnetohydrodynamic shear instabilities and convective flows in the solar interior

    Get PDF
    Motivated by the interface model for the solar dynamo, this paper explores the complex magnetohydrodynamic interactions between convective flows and shear-driven instabilities. Initially, we consider the dynamics of a forced shear flow across a convectively-stable polytropic layer, in the presence of a vertical magnetic field. When the imposed magnetic field is weak, the dynamics are dominated by a shear flow (Kelvin-Helmholtz type) instability. For stronger fields, a magnetic buoyancy instability is preferred. If this stably stratified shear layer lies below a convectively unstable region, these two regions can interact. Once again, when the imposed field is very weak, the dynamical effects of the magnetic field are negligible and the interactions between the shear layer and the convective layer are relatively minor. However, if the magnetic field is strong enough to favour magnetic buoyancy instabilities in the shear layer, extended magnetic flux concentrations form and rise into the convective layer. These magnetic structures have a highly disruptive effect upon the convective motions in the upper layer.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Sunyaev-Zel'dovich-measured Pressure Profiles from the Bolocam X-Ray/SZ Galaxy Cluster Sample

    Get PDF
    We describe Sunyaev-Zel'dovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We deproject the average pressure profile of our sample into 13 logarithmically spaced radial bins between 0.07R_(500) and 3.5R_(500), and we find that a generalized Navarro, Frenk, and White (gNFW) profile describes our data with sufficient goodness-of-fit and best-fit parameters (C_(500), α, β, γ, P_0 = 1.18, 0.86, 3.67, 0.67, 4.29). We use X-ray data to define cool-core and disturbed subsamples of clusters, and we constrain the average pressure profiles of each of these subsamples. We find that, given the precision of our data, the average pressure profiles of disturbed and cool-core clusters are consistent with one another at R≳ 0.15R_(500), with cool-core systems showing indications of higher pressure at R≾ 0.15R_(500). In addition, for the first time, we place simultaneous constraints on the mass scaling of cluster pressure profiles, their ensemble mean profile, and their radius-dependent intrinsic scatter between 0.1R_(500) and 2.0R_(500). The scatter among profiles is minimized at radii between ≃ 0.2R_(500) and ≃ 0.5R_(500), with a value of ≃ 20%. These results for the intrinsic scatter are largely consistent with previous analyses, most of which have relied heavily on X-ray derived pressures of clusters at significantly lower masses and redshifts compared to our sample. Therefore, our data provide further evidence that cluster pressure profiles are largely universal with scatter of ≃ 20%-40% about the universal profile over a wide range of masses and redshifts

    Damage signature of fatigued fabric reinforced plastics in the pulsed ultrasonic polar scan

    Get PDF
    This study investigates the use of both the amplitude and time-of-flight based pulsed ultrasonic polar scan (P-UPS) for the nondestructive detection and evaluation of fatigue damage in fiber reinforced composites. Several thermoplastic carbon fabric reinforced PPS specimens (CETEX), loaded under various fatigue conditions, have been scanned at multiple material spots according to the P-UPS technique in order to extract material degradation in a quantitative way. The P-UPS results indicate that shear dominated fatigued carbon/PPS goes with a reduction of shear properties combined with large fiber distortions. The P-UPS results of the tension-tension fatigued carbon/PPS samples on the other hand reveal a directional degradation of the stiffness properties, reaching a maximum reduction of -12.8% along the loading direction. The P-UPS extracted damage characteristics are fully supported by simulations, conventional destructive tests as well as visual inspection. The results demonstrate the excellent capability of the P-UPS method for nondestructively assessing and quantifying both shear-dominated and tension-tension fatigue damage in fabric reinforced plastics
    corecore