111 research outputs found
Episodic synchronization in dynamically driven neurons
We examine the response of type II excitable neurons to trains of synaptic
pulses, as a function of the pulse frequency and amplitude. We show that the
resonant behavior characteristic of type II excitability, already described for
harmonic inputs, is also present for pulsed inputs. With this in mind, we study
the response of neurons to pulsed input trains whose frequency varies
continuously in time, and observe that the receiving neuron synchronizes
episodically to the input pulses, whenever the pulse frequency lies within the
neuron's locking range. We propose this behavior as a mechanism of rate-code
detection in neuronal populations. The results are obtained both in numerical
simulations of the Morris-Lecar model and in an electronic implementation of
the FitzHugh-Nagumo system, evidencing the robustness of the phenomenon.Comment: 7 pages, 8 figure
Spectra and waiting-time densities in firing resonant and nonresonant neurons
The response of a neural cell to an external stimulus can follow one of the
two patterns: Nonresonant neurons monotonously relax to the resting state after
excitation while resonant ones show subthreshold oscillations. We investigate
how do these subthreshold properties of neurons affect their suprathreshold
response. Vice versa we ask: Can we distinguish between both types of neuronal
dynamics using suprathreshold spike trains? The dynamics of neurons is given by
stochastic FitzHugh-Nagumo and Morris-Lecar models with either having a focus
or a node as the stable fixpoint. We determine numerically the spectral power
density as well as the interspike interval density in response to a random
(noise-like) signals. We show that the information about the type of dynamics
obtained from power spectra is of limited validity. In contrast, the interspike
interval density gives a very sensitive instrument for the diagnostics of
whether the dynamics has resonant or nonresonant properties. For the latter
value we formulate a fit formula and use it to reconstruct theoretically the
spectral power density, which coincides with the numerically obtained spectra.
We underline that the renewal theory is applicable to analysis of
suprathreshold responses even of resonant neurons.Comment: 7 pages, 8 figure
Challenges for Coring Deep Permafrost on Earth and Mars
This is the published version. Final publication is available from Mary Ann Liebert, Inc., publishers http://www.dx.doi.org/10.1089/ast.2007.0159.A scientific drilling expedition to the High Lake region of Nunavut, Canada, was recently completed with the goals of collecting samples and delineating gradients in salinity, gas composition, pH, pe, and microbial abundance in a 400 m thick permafrost zone and accessing the underlying pristine subpermafrost brine. With a triple-barrel wireline tool and the use of stringent quality assurance and quality control (QA/QC) protocols, 200 m of frozen, Archean, mafic volcanic rock was collected from the lower boundary that separates the permafrost layer and subpermafrost saline water. Hot water was used to remove cuttings and prevent the drill rods from freezing in place. No cryopegs were detected during penetration through the permafrost. Coring stopped at the 535 m depth, and the drill water was bailed from the hole while saline water replaced it. Within 24 hours, the borehole iced closed at 125 m depth due to vapor condensation from atmospheric moisture and, initially, warm water leaking through the casing, which blocked further access. Preliminary data suggest that the recovered cores contain viable anaerobic microorganisms that are not contaminants even though isotopic analyses of the saline borehole water suggests that it is a residue of the drilling brine used to remove the ice from the upper, older portion of the borehole. Any proposed coring mission to Mars that seeks to access subpermafrost brine will not only require borehole stability but also a means by which to generate substantial heating along the borehole string to prevent closure of the borehole from condensation of water vapor generated by drilling. Astrobiology 8, 623–638
Src-family kinases in the development and therapy of Philadelphia chromosome-positive chronic myeloid leukemia and acute lymphoblastic leukemia
The BCR-ABL kinase inhibitor imatinib has shown significant efficacy in chronic myeloid leukemia (CML) and is the standard front-line therapy for patients in chronic phase. However, a substantial number of patients are either primarily refractory or acquire resistance to imatinib. While a number of mechanisms are known to confer resistance to imatinib, increasing evidence has demonstrated a role for BCR-ABL–independent pathways. The Src-family kinases (SFKs) are one such pathway and have been implicated in imatinib resistance. Additionally, these kinases are key to the progression of CML and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). The dual SFK/BCR-ABL inhibitor dasatinib is now clinically available and has markedly greater potency compared with imatinib against native BCR-ABL and the majority of imatinib resistant BCR-ABL mutants. Therefore, this agent, as well as other dual SFK/BCR-ABL inhibitors under development, could provide added therapeutic advantages by overcoming both BCR-ABL– dependent (i.e., BCR-ABL mutations) and – independent forms of imatinib resistance and delaying transition to advanced phase disease. In this review, we discuss the preclinical and clinical evidence demonstrating the involvement of SFKs in imatinib resistance and the progression of CML and Ph+ ALL, as well as the potential role of dual SFK/BCR-ABL inhibition in the management of these diseases
Processing of Retinal Signals in Normal and HCN Deficient Mice
This study investigates the role of two different HCN channel isoforms in the light response of the outer retina. Taking advantage of HCN-deficient mice models and of in vitro (patch-clamp) and in vivo (ERG) recordings of retinal activity we show that HCN1 and HCN2 channels are expressed at distinct retinal sites and serve different functions. Specifically, HCN1 operate mainly at the level of the photoreceptor inner segment from where, together with other voltage sensitive channels, they control the time course of the response to bright light. Conversely, HCN2 channels are mainly expressed on the dendrites of bipolar cells and affect the response to dim lights. Single cell recordings in HCN1−/− mice or during a pharmacological blockade of Ih show that, contrary to previous reports, Ikx alone is able to generate the fast initial transient in the rod bright flash response. Here we demonstrate that the relative contribution of Ih and Ikx to the rods' temporal tuning depends on the membrane potential. This is the first instance in which the light response of normal and HCN1- or HCN2-deficient mice is analyzed in single cells in retinal slice preparations and in integrated full field ERG responses from intact animals. This comparison reveals a high degree of correlation between single cell current clamp data and ERG measurements. A novel picture emerges showing that the temporal profile of the visual response to dim and bright luminance changes is separately determined by the coordinated gating of distinct voltage dependent conductances in photoreceptors and bipolar cells
Janus kinase 2 regulates Bcr–Abl signaling in chronic myeloid leukemia
Despite the success of imatinib mesylate (IM) in the early chronic phase of chronic myeloid leukemia (CML), patients are resistant to IM and other kinase inhibitors in the later stages of CML. Our findings indicate that inhibition of Janus kinase 2 (Jak2) in Bcr–Abl+ cells overcomes IM resistance although the precise mechanism of Jak2 action is unknown. Knocking down Jak2 in Bcr–Abl+ cells reduced levels of the Bcr–Abl protein and also the phosphorylation of Tyr177 of Bcr–Abl, and Jak2 overexpression rescued these knockdown effects. Treatment of Bcr–Abl+ cells with Jak2 inhibitors for 4–6 h but not with IM also reduced Bcr–Abl protein and pTyr177 levels. In vitro kinase experiments performed with recombinant Jak2 showed that Jak2 readily phosphorylated Tyr177 of Bcr–Abl (a Jak2 consensus site, YvnV) whereas c-Abl did not. Importantly, Jak2 inhibition decreased pTyr177 Bcr–Abl in immune complexes but did not reduce levels of Bcr–Abl, suggesting that the reduction of Bcr–Abl by Jak2 inhibition is a separate event from phosphorylation of Tyr177. Jak2 inhibition by chemical inhibitors (TG101209/WP1193) and Jak2 knockdown diminished the activation of Ras, PI-3 kinase pathways and reduced levels of pTyrSTAT5. These findings suggest that Bcr–Abl stability and oncogenic signaling in CML cells are under the control of Jak2
Influence of drug safety advisories on drug utilisation: an international interrupted time series and meta-analysis
OBJECTIVE: To evaluate the association between regulatory drug safety advisories and changes in drug utilisation. DESIGN: We conducted controlled, interrupted times series analyses with administrative prescription claims data to estimate changes in drug utilisation following advisories. We used random-effects meta-analysis with inverse-variance weighting to estimate the average postadvisory change in drug utilisation across advisories. STUDY POPULATION: We included advisories issued in Canada, Denmark, the UK and the USA during 2009-2015, mainly concerning drugs in common use in primary care. We excluded advisories related to over-the-counter drugs, drug-drug interactions, vaccines, drugs used primarily in hospital and advisories with co-interventions within ±6 months. MAIN OUTCOME MEASURES: Change in drug utilisation, defined as actual versus predicted percentage change in the number of prescriptions (for advisories without dose-related advice), or in the number of defined daily doses (for dose-related advisories), per 100 000 population. RESULTS: Among advisories without dose-related advice (n=20), the average change in drug utilisation was -5.83% (95% CI -10.93 to -0.73; p=0.03). Advisories with dose-related advice (n=4) were not associated with a statistically significant change in drug utilisation (-1.93%; 95% CI -17.10 to 13.23; p=0.80). In a post hoc subgroup analysis of advisories without dose-related advice, we observed no statistically significant difference between the change in drug utilisation following advisories with explicit prescribing advice, such as a recommendation to consider the risk of a drug when prescribing, and the change in drug utilisation following advisories without such advice. CONCLUSIONS: Among safety advisories issued on a wide range of drugs during 2009-2015 in 4 countries (Canada, Denmark, the UK and the USA), the association of advisories with changes in drug utilisation was variable, and the average association was modest
A BCR-ABL Mutant Lacking Direct Binding Sites for the GRB2, CBL and CRKL Adapter Proteins Fails to Induce Leukemia in Mice
The BCR-ABL tyrosine kinase is the defining feature of chronic myeloid leukemia (CML) and its kinase activity is required for induction of this disease. Current thinking holds that BCR-ABL forms a multi-protein complex that incorporates several substrates and adaptor proteins and is stabilized by multiple direct and indirect interactions. Signaling output from this highly redundant network leads to cellular transformation. Proteins known to be associated with BCR-ABL in this complex include: GRB2, c-CBL, p62DOK, and CRKL. These proteins in turn, link BCR-ABL to various signaling pathways indicated in cellular transformation. In this study we show that a triple mutant of BCR-ABL with mutations of the direct binding sites for GRB2, CBL, p62DOK and CRKL, is defective for transformation of primary hematopoietic cells in vitro and in a murine CML model, while it retains the capacity to induce IL-3 independence in 32D cells. Compared to BCR-ABL, the triple mutant's ability to activate the MAP kinase and PI3-kinase pathways is severely compromised, while STAT5 phosphorylation is maintained, suggesting that the former are crucial for the transformation of primary cells, but dispensable for transformation of factor dependent cell lines. Our data suggest that inhibition of BCR-ABL-induced leukemia by disrupting protein interactions could be possible, but would require blocking of multiple sites
Icaritin Shows Potent Anti-Leukemia Activity on Chronic Myeloid Leukemia In Vitro and In Vivo by Regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT Signalings
PURPOSE: To explore the effects of Icaritin on chronic myeloid leukemia (CML) cells and underlying mechanisms. METHOD: CML cells were incubated with various concentration of Icaritin for 48 hours, the cell proliferation was analyzed by MTT and the apoptosis was assessed with Annexin V and Hoechst 33258 staining. Cell hemoglobinization was determined. Western blotting was used to evaluate the expressions of MAPK/ERK/JNK signal pathway and Jak-2/Phorpho-Stat3/Phorsph-Akt network-related protein. NOD-SCID nude mice were applied to demonstrate the anti-leukemia effect of Icaritin in vivo. RESULTS: Icaritin potently inhibited proliferation of K562 cells (IC50 was 8 µM) and primary CML cells (IC50 was 13.4 µM for CML-CP and 18 µM for CML-BC), induced CML cells apoptosis and promoted the erythroid differentiation of K562 cells with time-dependent manner. Furthermore, Icaritin was able to suppress the growth of primary CD34+ leukemia cells (CML) and Imatinib-resistant cells, and to induce apoptosis. In mouse leukemia model, Icaritin could prolong lifespan of NOD-SCID nude mice inoculated with K562 cells as effective as Imatinib without suppression of bone marrow. Icaritin could up-regulate phospho-JNK or phospho-C-Jun and down-regulate phospho-ERK, phospho-P-38, Jak-2, phospho-Stat3 and phospho-Akt expression with dose- or time-dependent manner. Icaritin had no influence both on c-Abl and phospho-c-Abl protein expression and mRNA levels of Bcr/Abl. CONCLUSION: Icaritin from Chinese herb medicine may be a potential anti-CML agent with low adverse effect. The mechanism of anti-leukemia for Icaritin is involved in the regulation of Bcr/Abl downstream signaling. Icaritin may be useful for an alternative therapeutic choice of Imatinib-resistant forms of CML
Hydroxyzine Initiation Following Drug Safety Advisories on Cardiac Arrhythmias in the UK and Canada: A Longitudinal Cohort Study
INTRODUCTION: Regulatory advisories on hydroxyzine and risk of QT prolongation and Torsade de pointes (TdP) were issued in the UK in April 2015 and Canada in June 2016. We hypothesized patients with risk factors for QT prolongation and TdP, compared with those without risk factors, would be less likely to initiate hydroxyzine in the UK and in British Columbia (BC), Canada, following advisories. METHODS: We conducted a longitudinal study with repeated measures, and evaluated hydroxyzine initiation in a UK cohort and a concurrent BC control cohort (April 2013-March 2016) as well as in a BC advisory cohort (June 2014-May 2017). RESULTS: This study included 247,665 patients in the UK cohort, 297,147 patients in the BC control cohort, and 303,653 patients in the BC advisory cohort. Over a 12-month post-advisory period, hydroxyzine initiation decreased by 21% in the UK (rate ratio 0.79, 95% confidence interval 0.66-0.96) relative to the expected level of initiation based on the pre-advisory trend. Hydroxyzine initiation did not change in the BC control cohort or following the Canadian advisory in the BC advisory cohort. The decrease in hydroxyzine initiation in the UK in the 12 months after the advisories was not significantly different for patients with risk factors compared with those without risk factors. CONCLUSION: Hydroxyzine initiation decreased in the UK, but not in BC, in the 12 months following safety advisories. The decrease in hydroxyzine initiation in the UK was not significantly different for patients with versus without risk factors for QT prolongation and TdP
- …