29 research outputs found

    Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg

    Get PDF
    © 2018, The Author(s). High-pressure torsion (HPT) processing was applied to cast pure magnesium, and the effects of the deformation on the microstructure, hardness, tensile properties and corrosion resistance were evaluated. The microstructures of the processed samples were examined by electron backscatter diffraction, and the mechanical properties were determined by Vickers hardness and tensile testing. The corrosion resistance was studied using electrochemical impedance spectroscopy in a 3.5% NaCl solution. The results show that HPT processing effectively refines the grain size of Mg from millimeters in the cast structure to a few micrometers after processing and also creates a basal texture on the surface. It was found that one or five turns of HPT produced no significant difference in the grain size of the processed Mg and the hardness was a maximum after one turn due to recovery in some grains. Measurements showed that the yield strength of the cast Mg increased by about seven times whereas the corrosion resistance was not significantly affected by the HPT processing

    Reversed microstructures and tensile properties after various cold rolling reductions in AISI 301LN steel

    No full text
    Abstract Heavy cold rolling is generally required for efficient grain size refinement in the martensitic reversion process, which is, however, not desirable in practical processing. In the present work, the influence of cold rolling reductions of 32%, 45% and 63% on the microstructure evolution and mechanical properties of a metastable austenitic AISI 301LN type steel were investigated in detail adopting scanning electron microscopy with the electron backscatter diffraction method and mechanical testing. A completely austenitic microstructure and a partially reversed counterpart were created. It was found that the fraction of grains with a size of 3 µm or larger, called medium-sized grains, increased with decreasing the prior cold rolling reduction. These grains are formed mainly from the shear-reversed austenite, transformed from slightly-deformed martensite, by gradual evolution of subgrains to grains. However, in spite of significant amounts of medium-sized grains, the tensile properties after the 32% or 45% cold rolling reductions were practically equal to those after the 63% reduction. The austenite stability against the formation of deformation-induced martensite in subsequent straining was reduced by lowering the cold rolling reduction, due to the larger grain size of medium-sized grains and the shift of their orientation towards {211} <uvw>

    Fatigue Properties of Steels with Ultrasonic Attrition Treated Surface Layers

    No full text
    International audienceSeverely deformed surface layers have been created by ultrasonic attrition technique on four steel sheets to investigate their influence on fatigue behaviour. A low-carbon (0.05%) ferritic steel and a medium-carbon (0.47%) normalized ferritic-pearlitic steel were selected to study the effect of carbon content on fatigue properties of carbon steels. Two stainless steels, Type 316L and Type 301LN, were also tested to study the influence of stability of the austenitic structure. Microstructural features were characterized by hardness measurements, X-ray diffraction and optical and electron microscopy. Fatigue properties were determined in flexural bending in the range 104 to 107 cycles. Crack nucleation and propagation stages were followed. In the attrition treatment thin severely deformed surface layers were found to form. Highly increased hardness was measured in these layers, especially for stainless steels, where also strain-induced martensite was formed. Drastic improvement in fatigue resistance was observed for all steels due to the surface nanocrystallization treatment

    Flow stress behaviour and static recrystallization characteristics of hot deformed austenite in microalloyed medium-carbon bainitic steels

    No full text
    Abstract In the past decade, efforts have been focused on developing very fine, medium-carbon bainitic steels via the low-temperature (typically 300–400 °C) ausforming process, which not only enables shorter isothermal holding times for bainitic transformation at low temperatures, but also offers significantly improved strength. This paper describes static recrystallization (SRX) characteristics of austenite in four medium-carbon 2%Mn-1.3%Si-0.7%Cr steels with and without microalloying intended for the development of these steels. The stress-relaxation method on a Gleeble simulator resulted in recrystallization times over a wide range of temperatures, strains and strain rates. Also, the occurrence of precipitation was revealed. Powers of strain (−1.7 to −2.7) and strain rate (−0.21 to −0.28) as well as the apparent activation energies (225–269 kJ/mol) were in the ranges reported in the literature for C-Mn and microalloyed steels with lower Mn and Si contents. The new regression equations established for estimating times for 50% SRX revealed the retardation effects of microalloying and Mo addition showing reasonable fits with the experimental data, whereas the previous model suggested for ordinary microalloyed steels tended to predict clearly shorter times on average than the experimental values for the present coarse-grained steels. The Boratto equation to estimate the non-recrystallization temperature was successfully modified to include the effect of Mo alloying and high silicon concentrations

    A new combinatorial processing route to achieve an ultrafine-grained, multiphase microstructure in a medium Mn steel

    No full text
    Abstract A new combination of factors enhancing the stabilization of austenite, including pre-existed austenite among quenched martensite, prior deformation, and partitioning at high temperatures is employed to create a multi-component refined microstructure in a medium Mn steel (Fe–4Mn–0.31C–2Ni–0.5Al–0.2Mo, wt.%). The microstructure evolution and phase fraction during the processing are systematically investigated using various characterization methods. The microstructure of the specimen after 0.4 strain deformation of 73% martensite–27% austenite at 250 °C and subsequent partition-annealing at 600 °C for 20 min was composed of several phases including tempered martensite, fresh martensite, pearlite, 10% of retained austenite (RA) and undissolved cementite. By increasing the annealing temperature, the pearlitic transformation was suppressed, whereas recrystallization of the deformed martensite and carbide dissolution occurred following annealing at 650 °C for 20 min resulting in an ultrafine-grained microstructure composed of equiaxed ferrite, 32% RA along with some fresh martensite during final cooling and few carbide precipitates. The results demonstrate that the combinatorial approach accelerated partitioning of alloying elements from martensite and carbides to largely pre-existing austenite is responsible for the improved austenite stabilization during intercritical annealing of the deformed dual-phase specimens. However, competitive processes are also enhanced so that the RA content is not increased by deformation
    corecore