354 research outputs found

    Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C

    Get PDF
    Metamorphism is thought to destroy microfossils, partly through devolatilization and graphitization of biogenic organic matter. However, the extent to which there is a loss of molecular, elemental and isotope signatures from biomass during high-temperature metamorphism is not clearly established. We report on graphitic structures inside and coating apatite grains from the c. 1850 Ma Michigamme silicate banded iron formation from Michigan, metamorphosed above 550°C. Traces of N, S, O, H, Ca and Fe are preserved in this graphitic carbon and X-ray spectra show traces of aliphatic groups. Graphitic carbon has an expanded lattice around 3.6 Å, forms microscopic concentrically-layered and radiating polygonal flakes and has homogeneous δ13C values around −22‰, identical to bulk analyses. Graphitic carbon inside apatite is associated with nanometre-size ammoniated phyllosilicate. Precursors of these metamorphic minerals and graphitic carbon originated from ferruginous clayrich sediments with biomass. We conclude that graphite coatings and inclusions in apatite grains indicate fluid remobilization during amphibolite-facies metamorphism of precursor biomass. This new evidence fills in observational gaps of metamorphosed biomass into graphite and supports the existence of biosignatures in the highly metamorphosed iron formation from the Eoarchean Akilia Association, which dates from the beginning of the sedimentary rock record

    Supersymmetry and R-symmetry breaking in models with non-canonical Kahler potential

    Full text link
    We analyze several aspects of R-symmetry and supersymmetry breaking in generalized O'Raifeartaigh models with non-canonical Kahler potential. Some conditions on the Kahler potential are derived in order for the non-supersymmetric vacua to be degenerate. We calculate the Coleman-Weinberg (CW) effective potential for general quiral non-linear sigma models and then study the 1-loop quantum corrections to the pseudo-moduli space. For R-symmetric models, the quadratic dependence of the CW potential with the ultraviolet cutoff scale disappears. We also show that the conditions for R-symmetry breaking are independent of this scale and remain unchanged with respect to those of canonical models. This is, R-symmetry can be broken when generic R-charge assignments to the fields are made, while it remains unbroken when only fields with R-charge 0 and 2 are present. We further show that these models can keep the runaway behavior of their canonical counterparts and also new runaway directions can be induced. Due to the runaway directions, the non-supersymmetric vacua is metastable.Comment: 19 pages, revised version with minor changes, references added, published in JHE

    Precipitation of high Mg-calcite and protodolomite using dead biomass of aerobic halophilic bacteria

    Get PDF
    The microbial dolomite model has been used to interpret the origin of sedimentary dolomite. In this model, the formation of low-temperature protodolomite, an important precursor to sedimentary dolomite, can be facilitated either by actively metabolizing cells of anaerobic microbes and aerobic halophilicarchaea or by their inactive biomass. Aerobic halophilic bacteria are widely distributed in (proto-)dolomite-depositing evaporitic environments and their biomass might serve as a template for the crystallization of protodolomite. To test this hypothesis, carbonation experiments were conducted using dead biomass of an aerobic halophilic bacterium (Exiguobacterium sp. strain JBHLT-3). Our results show that dead biomass of JBHLT-3 can accelerate Mg2+ uptake in carbonate mineral precipitates. In addition, the amount of Mg incorporated into Ca-Mg carbonates is proportional to the concentration of biomass. High Mg-calcite is produced with 0.25 or 0.5 g/L biomass, whereasprotodolomite forms with 1 g/L biomass. This is confirmed by the main Raman peak of Ca-Mg carbonates, which shifts towards higher wavenumbers with increased Mg substitution. Microbial cells and their imprints are preserved on the surface of high Mg-calcite and protodolomite. Hence, this study furthers our understanding of the dolomitization within buried and dead microbial mats, which provides useful insights into the origin of ancient dolomite

    Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals

    Get PDF
    The origin of sedimentary dolomite is a subject of long-standing enigma that still awaits resolution. Previous studies have shown that room temperature synthesis of abiotic dolomite is rarely achieved and primary (proto-)dolomite precipitation is closely associated with microbial activities. In this study, we demonstrate through laboratory carbonation experiments that highly negative-charged clay minerals (as indicated by the values of zetal potential) such as illite and montmorillonite can aid the precipitation of abiotic proto-dolomite under ambient conditions, whereas nearly-neutral charged kaolinite exerts negligible influence on such process. In comparison to montmorillonite, illite has higher surface-charge density, thus is more effective in catalyzing proto-dolomite precipitation. Furthermore, the signal of proto-dolomite in carbonate neoformations is enhanced with increasing concentrations of illite or montmorillonite. On the basis of these results, we suggest that clay minerals catalyze dolomite formation perhaps via electrostatic binding of Mg2+ and Ca2+ ions and simultaneous desolvation of these strongly hydrated cations, a crucial step for dolomite crystallization. The resulting proto-dolomites display the morphologies, textures, and structures similar to those of biogenic dolomite reported before, which are considered precursors of ordered sedimentary dolomite. Therefore, our results offer a possible route to authigenic dolomite found in sedimentary environments

    The Termination and Aftermath of the Lomagundi-Jatuli Carbon Isotope Excursions in the Paleoproterozoic Hutuo Group, North China

    Get PDF
    The Lomagundi-Jatuli Event (LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ13Ccarb values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, the duration, amplitude and patterns of these excursions remain poorly constrained. The 2.14–1.83 Ga Hutuo Group in theNorth ChinaCraton is a >10 kmthick volcano-sedimentary sequence, including >5 kmthick well-preserved carbonates that were deposited in supra-tidal to sub-tidal environments. C-O isotopic and elemental analyses of 152 least altered samples of the carbonates revealed a three-stage δ13Cevolution. It began with an exclusively positive δ13Ccarb (+1.3 to + 3.4‰) stage in the ~2.1 Ga carbonate in the Dashiling and Qingshicun Formations, followed by a transition from positive values to oscillating positive and negative values in ~3000 mthick carbonates of the Wenshan, Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative δ13Ccarb values preserved in >500 mthick dolostones of the Huaiyincun and Beidaxing Formations. It appears that much of the LJE, particularly those extremely positive δ13Ccarb signals, was not recorded in the Hutuo carbonates. The exclusively positive δ13Ccarb values (+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, whereas the subsequent two stages reflect the aftermath of the LJE and the onset of Shunga-Francevillian event (SFE). The present data point to an increased influence of oxygen on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the termination of the LJE in the North China Craton is nearly simultaneous with those in Fennoscandia and South Africa

    The metaphysics of mental files

    Get PDF
    There is much to be said for a diachronic or interpersonal individuation of singular modes of presentation (MOPs) in terms of a criterion of epistemic transparency between thought tokens. This way of individuating MOPs has been discussed recently within the mental files framework, though the issues discussed here arise for all theories that individuate MOPs in terms of relations among tokens. All such theories face objections concerning apparent failures of the transitivity of the ‘same MOP’ relation. For mental files, these transitivity failures most obviously occur because mental files can merge or undergo fission. In this paper I argue that this problem is easily resolved once mental files are properly construed as continuants, whose metaphysics is analogous to that of persons or physical objects. All continuants can undergo fission or fusion, leading to similar transitivity problems, but there are well-established theories of persistence that accommodate this. I suggest that, in particular, the stage theory best suits the purposes of a continuant theory of MOPs.PostprintPeer reviewe

    Transformation of microbially-induced protodolomite to dolomite proceeds under dry-heating conditions

    Get PDF
    The genesis of sedimentary dolomite remains an unresolved issue. Protodolomite has been considered as a metastable precursor for some sedimentary dolomites. Through laboratory experiments, much has been learnt about the transformation of protodolomite into dolomite under hydrothermal conditions mimicking those in open diagenetic systems. However, it is still unclear whether such mineral transformation could proceed in closed diagenetic systems, in which the supply of externally-derived fluids is often limited. Here through dry-heating experiments we demonstrated that low-temperature protodolomite converts into dolomite in the absence of external fluid. The starting materials for the recrystallization reactions included two types of protodolomite: biotic protodolomite and its abiotic counterpart. Biotic protodolomite was synthesized by means of a halophilic bacterium at 30 °C. Since the synthesis of abiotic protodolomite normally requires higher temperatures than biotic ones, the abiotic protodolomite samples used herein were prepared at 60 °C and 100 °C. These protodolomites were spherical in shape and composed of nano-globular subunits. Our protodolomite samples contained considerable structural water in the range of 1.4-7 wt%. The water content of protodolomites was linearly correlated with their synthesis temperature, that is, biotic protodolomite had a higher amount of water than its abiotic counterparts. The protodolomite samples were then dry-annealed at temperatures of 100 to 300 °C for two months. The results indicated that the rate of protodolomite-to-dolomite transformation was higher in the reactors using biotic protodolomite than those using abiotic protodolomites. This conversion was likely triggered by the dehydration of structural water within protodolomite. The resulting dolomite mostly retained spherical morphology, whereas its nanosized subunits tended to become rhombohedral. Calcite neoformation was also found to accompany the dolomite formation. Our findings suggest that structural water within protodolomite is an overlooked internal fluid and it might have an impact on the genesis of sedimentary dolomite during burial diagenesis

    Evaluation of Student Pharmacists’ Attitudes and Perceptions of Hormonal Contraception Prescribing in Indiana

    Get PDF
    Community pharmacists’ scope of practice is expanding to include hormonal contraceptive prescribing. Prior to introducing statewide legislation, it is important to assess the perceptions of future pharmacists. A cross-sectional survey was distributed to 651 third- and fourth-year professional students enrolled at three colleges of pharmacy in Indiana. Data were collected between September and October 2019 to assess students’ attitudes about prescribing hormonal contraceptives, readiness to prescribe, perceived barriers, and desire for additional training. In total, 20.9% (n = 136) students responded. Most (89%, n = 121) believe that pharmacist-prescribed hormonal contraceptives would be beneficial to women in Indiana, and 91% (n = 124) reported interest in providing this service. Liability, personal beliefs, and religious beliefs were the most commonly cited perceived barriers. Most students felt they received adequate teaching on hormonal contraceptive methods (90%, n = 122) and hormonal contraceptive counseling (79%, n = 107); only 5% (n = 7) felt ready to provide the service at the time of survey completion. Student pharmacists in their final two years of pharmacy school are interested in prescribing hormonal contraceptives and believe that this service would be beneficial. This expansion of pharmacy practice would likely be supported by future pharmacists who feel the service could provide benefit to women seeking hormonal contraceptives in Indiana

    Finite temperature behaviour of the ISS-uplifted KKLT model

    Get PDF
    We study the static phase structure of the ISS-KKLT model for moduli stabilisation and uplifting to a zero cosmological constant. Since the supersymmetry breaking sector and the moduli sector are only gravitationally coupled, we expect negligible quantum effects of the modulus upon the ISS sector, and the other way around. Under this assumption, we show that the ISS fields end up in the metastable vacua. The reason is not only that it is thermally favoured (second order phase transition) compared to the phase transition towards the supersymmetric vacua, but rather that the metastable vacua form before the supersymmetric ones. This nice feature is exclusively due to the presence of the KKLT sector. We also show that supergravity effects are negligible around the origin of the field space. Finally, we turn to the modulus sector and show that there is no destabilisation effect coming from the ISS sector.Comment: 23 pages, 3 figures, mistake corrected, one plot updated, physical conclusions unchange
    corecore