588 research outputs found
Low thrust orbit determination program
Logical flow and guidelines are provided for the construction of a low thrust orbit determination computer program. The program, tentatively called FRACAS (filter response analysis for continuously accelerating spacecraft), is capable of generating a reference low thrust trajectory, performing a linear covariance analysis of guidance and navigation processes, and analyzing trajectory nonlinearities in Monte Carlo fashion. The choice of trajectory, guidance and navigation models has been made after extensive literature surveys and investigation of previous software. A key part of program design relied upon experience gained in developing and using Martin Marietta Aerospace programs: TOPSEP (Targeting/Optimization for Solar Electric Propulsion), GODSEP (Guidance and Orbit Determination for SEP) and SIMSEP (Simulation of SEP)
Use of graphene as protection film in biological environments
Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu(2+) ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application
Primary Care Physicians’ Support of Shared Decision Making for Different Cancer Screening Decisions
Despite widespread advocacy, shared decision making (SDM) is not routinely used for cancer screening. To better understand implementation barriers, we describe primary care physicians’ (PCPs’) support for SDM across diverse cancer screening contexts
Novel Use of Folate-Targeted Intraoperative Fluorescence, OTL38, in Robot-Assisted Laparoscopic Partial Nephrectomy: Report of the First Three Cases
Partial nephrectomy is now the preferred surgical option for small renal tumors because it allows nephron preservation without compromising oncologic clearance. Its outcomes depend on the surgeon's ability to continuously identify the edges of the tumor during resection, thus leaving an adequate margin around the tumor without excessive removal of normal parenchyma, as well as keeping a short ischemic time. Folate receptors are highly abundant in the normal kidney, and there is a difference in folate receptor expression between malignant and normal renal tissues. Thus, the use of fluorescent agents that target folate receptors should result in differential fluorescence between the tumor and surrounding parenchyma during partial nephrectomy, which, in turn, helps tumor demarcation for identification and resection. A phase 2 study on the novel use of OTL38 in robot-assisted laparoscopic partial nephrectomy is currently in progress in our institution. The outcomes of the first three cases have shown the possible advantages of OTL38 in intraoperative tumor identification before resection and recognition of residual disease in the surrounding parenchyma after resection. The tumors typically appeared dark while the surrounding parenchyma showed brighter fluorescence. Immediately after tumor resection, the margins of all the specimens appeared to have a uniformly bright fluorescence, suggestive of an intact margin of normal renal parenchyma along the plane of excision. The pattern of intraoperative fluorescence correlates well with immunohistochemistry. No OTL38-related adverse effects have been seen among these three patients. We present the outcomes of these three cases, illustrated with intraoperative and immunohistochemistry images
Recommended from our members
Potential energy sputtering of EUVL materials
Of the many candidates employed for understanding the erosion of critical Extreme Ultraviolet Lithography (EUVL) components, potential energy damage remains relatively uninvestigated. Unlike the familiar kinetic energy sputtering, which is a consequence of the momentum transferred by an ion to atoms in the target, potential energy sputtering occurs when an ion rapidly collects charge from the target as it neutralizes. Since the neutralization energy of a singly charged ion is typically on the order of 10 eV, potential energy effects are generally neglected for low charge state ions, and hence the bulk of the sputtering literature. As an ion's charge state is increased, the potential energy (PE) increases rapidly, e.g. PE(Xe{sup 1+})= 11 eV, PE(Xe{sup 10+}) = 810 eV, PE(Xe{sup 20+}) = 4.6 keV, etc. By comparison, the binding energy of a single atom on a surface is typically about 5 eV, so even relatively inefficient energy transfer mechanisms can lead to large quantities of material being removed, e.g. 25% efficiency for Xe{sup 10+} corresponds to {approx} 40 atoms/ion. By comparison, singly charged xenon ions with {approx} 20 keV of kinetic energy sputter only about 5 atoms/ion at normal incidence, and less than 1 atom/ion at typical EUV source energies. EUV light sources are optimized for producing approximately 10{sup 16} xenon ions per shot with an average charge state of q=10 in the core plasma. At operational rates of {approx}10 kHz, the number of ions produced per second becomes a whopping 10{sup 20}. Even if only one in a billion ions reaches the collector, erosion rates could reach {approx}10{sup 12} atoms per second, severely reducing the collector lifetime (for an average yield of 10 atoms/ion). In addition, efforts to reduce contamination effects may contribute to reduced neutralization and even larger potential energy damages rates (discussed further below). In order to provide accurate estimates for collector lifetimes and to develop mitigation schemes, NIST is working to understand and quantify potential energy damage mechanisms on materials relevant to EUVL. Accurate potential energy damage rates can then be used for projecting component lifetimes as source plasma conditions are modified and characterized. This chapter will serve to provide an introduction and some background to the physics of highly charged ions and some of the relevant experimental work in the literature. This chapter will first provide a brief background and an overview of the interaction of highly charged ions (HCIs) with solids as it is currently understood. Secondly, it will present current data from screen test measurements performed to isolate and evaluate the effects of potential energy damage on critical EUVL materials. We will then speculate on the implications of work to date and the outlook for EUVL development and, finally, summarize
Creating massive entanglement of Bose condensed atoms
We propose a direct, coherent coupling scheme that can create massively
entangled states of Bose-Einstein condensed atoms. Our idea is based on an
effective interaction between two atoms from coherent Raman processes through a
(two atom) molecular intermediate state. We compare our scheme with other
recent proposals for generation of massive entanglement of Bose condensed
atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy
LETTER TO THE EDITOR: Structure of the photodetachment cross section in a magnetic field: an experiment with
Photodetachment from in a magnetic field has been studied experimentally using light with energies between 14400 and . Presented here are high-resolution data which exhibit sharp magnetic field structure at thresholds and low-resolution data which show monotonically increasing cross sections. The current work is the first in any atomic or molecular system where sufficient energy resolution has been achieved to observe the shape of the cross section in a magnetic field.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48852/2/b624l4.pd
Most vital segment barriers
We study continuous analogues of "vitality" for discrete network flows/paths,
and consider problems related to placing segment barriers that have highest
impact on a flow/path in a polygonal domain. This extends the graph-theoretic
notion of "most vital arcs" for flows/paths to geometric environments. We give
hardness results and efficient algorithms for various versions of the problem,
(almost) completely separating hard and polynomially-solvable cases
- …