55 research outputs found

    A conceptual design study of the reusable reentry satellite

    Get PDF
    Experimentation leading to an understanding of life processes under reduced and extremely low gravitational forces will profoundly contribute to the success of future space missions involving humans. In addition to research on gravitational biology, research on the effects of cosmic radiation and the interruption and change of circadian rhythms on life systems is also of prime importance. Research in space, however, is currently viewed by biological scientists as an arena that is essential, yet largely inaccessible to them for their experimentation. To fulfill this need, a project and spacecraft system described as the Reusuable Reentry Satellite or Lifesat has been proposed by NASA

    BRAINSTACK – A Platform for Artificial Intelligence & Machine Learning Collaborative Experiments on a Nano-Satellite

    Get PDF
    Space missions have become more ambitious with exploration targets growing ever distant while simultaneously requiring larger guidance and communication budgets. These conflicting desires of distance and control drive the need for in-situ intelligent decision making to reduce communication and control limitations. While ground based research on Artificial Intelligence and Machine Learning (AI/ML) software modules has grown exponentially, the capacity to experimentally validate such software modules in space in a rapid and inexpensive format has not. To this end, the Nano Orbital Workshop (NOW) group at NASA Ames Research Center is performing flight evaluation tests of ‘commercially’ available bleeding-edge computational platforms via what is programmatically referred to as the BrainStack on the TechEdSat (TES-n) flight series. Processors selected as part of the BrainStack are of ideal size, packaging, and power consumption for easy integration into a cube satellite structure. These experiments have included the evaluation of small, high-performance GPUs and, more recently, neuromorphic processors in LEO operations. Additionally, it is planned to measure the radiation environment these processors experience to understand any degradation or computational artifacts caused by long term space radiation exposure on these novel architectures. This evolving flexible and collaborative environment involving various research teams across NASA and other organizations is intended to be a convenient orbital test platform from which many anticipated future space automation applications may be initially tested

    Induced Anisotropies in NiCo Obliquely Deposited Films and Their effect on Magnetic Domains

    Get PDF
    English Article: Oblique and in-plane anisotropies in obliquely evaporated NiCo thin films were investigated in order to understand their origin. All the compositions studied clearly show the effect of columnar grain morphology coupled with some intrinsic factors such as magnetostriction and crystallinity. Energy calculations are undertaken to explain the effect of

    Activation of Signaling Cascades by Weak Extremely Low Frequency Electromagnetic Fields

    Get PDF
    Background/Aims: Results from recent studies suggest that extremely low frequency magnetic fields (ELF-MF) interfere with intracellular signaling pathways related to proliferative control. The mitogen-activated protein kinases (MAPKs), central signaling components that regulate essentially all stimulated cellular processes, include the extracellular signal-regulated kinases 1/2 (ERK1/2) that are extremely sensitive to extracellular cues. Anti-phospho-ERK antibodies serve as a readout for ERK1/2 activation and are able to detect minute changes in ERK stimulation. The objective of this study was to explore whether activation of ERK1/2 and other signaling cascades can be used as a readout for responses of a variety of cell types, both transformed and non-transformed, to ELF-MF. Methods: We applied ELF-MF at various field strengths and time periods to eight different cell types with an exposure system housed in a tissue culture incubator and followed the phosphorylation of MAPKs and Akt by western blotting. Results: We found that the phosphorylation of ERK1/2 is increased in response to ELF-MF. However, the phosphorylation of ERK1/2 is likely too low to induce ELF-MF-dependent proliferation or oncogenic transformation. The p38 MAPK was very slightly phosphorylated, but JNK or Akt were not. The effect on ERK1/2 was detected for exposures to ELF-MF strengths as low as 0.15 µT and was maximal at ∼10 µT. We also show that ERK1/2 phosphorylation is blocked by the flavoprotein inhibitor diphenyleneiodonium, indicating that the response to ELF-MF may be exerted via NADP oxidase similar to the phosphorylation of ERK1/2 in response to microwave radiation. Conclusions: Our results further indicate that cells are responsive to ELF-MF at field strengths much lower than previously suspected and that the effect may be mediated by NADP oxidase. However, the small increase in ERK1/2 phosphorylation is probably insufficient to affect proliferation and oncogenic transformation. Therefore, the results cannot be regarded as proof of the involvement of ELF-MF in cancer in general or childhood leukemia in particular

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Gonionemus Versus 'Gonionema.'

    No full text
    n/

    SOME LIGHT REACTIONS OF THE MEDUSA GONIONEMUS

    No full text
    Volume: 17Start Page: 354End Page: 36

    L. Murbach to Charles Whitman, 1900

    No full text
    Accepting Whitman's offer and describing his plans for the Nature Course.Typed; good conditions.1 pageCorrespondenc
    corecore