5,348 research outputs found
Supernova 1987A: a Template to Link Supernovae to their Remnants
The emission of supernova remnants reflects the properties of both the
progenitor supernovae and the surrounding environment. The complex morphology
of the remnants, however, hampers the disentanglement of the two contributions.
Here we aim at identifying the imprint of SN 1987A on the X-ray emission of its
remnant and at constraining the structure of the environment surrounding the
supernova. We performed high-resolution hydrodynamic simulations describing SN
1987A soon after the core-collapse and the following three-dimensional
expansion of its remnant between days 1 and 15000 after the supernova. We
demonstrated that the physical model reproducing the main observables of SN
1987A during the first 250 days of evolution reproduces also the X-ray emission
of the subsequent expanding remnant, thus bridging the gap between supernovae
and supernova remnants. By comparing model results with observations, we
constrained the explosion energy in the range ~erg and
the envelope mass in the range . We found that the shape of
X-ray lightcurves and spectra at early epochs (<15 years) reflects the
structure of outer ejecta: our model reproduces the observations if the
outermost ejecta have a post-explosion radial profile of density approximated
by a power law with index . At later epochs, the shapes of X-ray
lightcurves and spectra reflect the density structure of the nebula around SN
1987A. This enabled us to ascertain the origin of the multi-thermal X-ray
emission, to disentangle the imprint of the supernova on the remnant emission
from the effects of the remnant interaction with the environment, and to
constrain the pre-supernova structure of the nebula.Comment: 16 pages, 11 Figures; accepted for publication on Ap
Modeling SNR Cassiopeia A from the Supernova Explosion to its Current Age: The role of post-explosion anisotropies of ejecta
The remnants of core-collapse supernovae (SNe) have complex morphologies that
may reflect asymmetries and structures developed during the progenitor SN
explosion. Here we investigate how the morphology of the SNR Cassiopeia A (Cas
A) reflects the characteristics of the progenitor SN with the aim to derive the
energies and masses of the post-explosion anisotropies responsible for the
observed spatial distribution of Fe and Si/S. We model the evolution of Cas A
from the immediate aftermath of the progenitor SN to the three-dimensional
interaction of the remnant with the surrounding medium. The post-explosion
structure of the ejecta is described by small-scale clumping of material and
larger-scale anisotropies. The hydrodynamic multi-species simulations consider
an appropriate post-explosion isotopic composition of the ejecta. The observed
average expansion rate and shock velocities can be well reproduced by models
with ejecta mass and explosion energy erg. The post-explosion anisotropies (pistons)
reproduce the observed distributions of Fe and Si/S if they had a total mass of
and a total kinetic energy of erg. The pistons produce a spatial inversion of ejecta layers at the
epoch of Cas A, leading to the Si/S-rich ejecta physically interior to the
Fe-rich ejecta. The pistons are also responsible for the development of bright
rings of Si/S-rich material which form at the intersection between the reverse
shock and the material accumulated around the pistons during their propagation.
Our result supports the idea that the bulk of asymmetries observed in Cas A are
intrinsic to the explosion.Comment: 19 pages, 14 Figures; accepted for publication on Ap
Recommended from our members
Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.
Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems
Detailed study of SNR G306.3-0.9 using XMM-Newton and Chandra observations
We used combined data from XMM-Newton and Chandra observatories to study the
X-ray morphology of SNR G306.3-0.9. A spatially-resolved spectral analysis was
used to obtain physical and geometrical parameters of different regions of the
remnant. Spitzer infrared observations were also used to constrain the
progenitor supernova and study the environment in which the SNR evolved. The
X-ray morphology of the remnant displays a non-uniform structure of
semi-circular appearance, with a bright southwest region and very weak or
almost negligible X-ray emission in its northern part. These results indicate
that the remnant is propagating in a non-uniform environment as the shock
fronts are encountering a high-density medium, where enhanced infrared emission
is detected. The X-ray spectral analysis of the selected regions shows distinct
emission-line features of several metal elements, confirming the thermal origin
of the emission. The X-ray spectra are well represented by a combination of two
absorbed thermal plasma models: one in equilibrium ionization with a mean
temperature of ~0.19 keV, and another out of equilibrium ionization at a higher
temperature of ~1.1 or 1.6-1.9 keV. For regions located in the northeast,
central, and southwest part of the SNR, we found elevated abundances of Si, S,
Ar, Ca, and Fe, typical of ejecta material. The outer regions located northwest
and south show values of the abundances above solar but lower than to those
found in the central regions. This suggests that the composition of the
emitting outer parts of the SNR is a combination of ejecta and shocked material
of the interstellar medium. The comparison between the S/Si, Ar/Si, and Ca/Si
abundances ratios (1.75, 1.27, and 2.72 in the central region, respectively),
favor a Type Ia progenitor for this SNR, a result that is also supported by an
independent morphological analysis using X-ray and IR data.Comment: 8 pages, 7 figures. Accepted by Astronomy and Astrophysic
The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs
Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
(abridged) AIMS. We investigate the dynamics and stability of post-shock
plasma streaming along nonuniform stellar magnetic fields at the impact region
of accretion columns. We study how the magnetic field configuration and
strength determine the structure, geometry, and location of the shock-heated
plasma. METHODS. We model the impact of an accretion stream onto the
chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our
model takes into account the gravity, the radiative cooling, and the
magnetic-field-oriented thermal conduction. RESULTS. The structure, stability,
and location of the shocked plasma strongly depend on the configuration and
strength of the magnetic field. For weak magnetic fields, a large component of
B may develop perpendicular to the stream at the base of the accretion column,
limiting the sinking of the shocked plasma into the chromosphere. An envelope
of dense and cold chromospheric material may also develop around the shocked
column. For strong magnetic fields, the field configuration determines the
position of the shock and its stand-off height. If the field is strongly
tapered close to the chromosphere, an oblique shock may form well above the
stellar surface. In general, a nonuniform magnetic field makes the distribution
of emission measure vs. temperature of the shocked plasma lower than in the
case of uniform magnetic field. CONCLUSIONS. The initial strength and
configuration of the magnetic field in the impact region of the stream are
expected to influence the chromospheric absorption and, therefore, the
observability of the shock-heated plasma in the X-ray band. The field strength
and configuration influence also the energy balance of the shocked plasma, its
emission measure at T > 1 MK being lower than expected for a uniform field. The
above effects contribute in underestimating the mass accretion rates derived in
the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with
full resolution images can be found at
http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd
Simulations of a micro-PET System based on Liquid Xenon
The imaging performance of a high-resolution preclinical microPET system
employing liquid xenon as the gamma ray detection medium was simulated. The
arrangement comprises a ring of detectors consisting of trapezoidal LXe time
projection ionization chambers and two arrays of large area avalanche
photodiodes for the measurement of ionization charge and scintillation light. A
key feature of the LXePET system is the ability to identify individual photon
interactions with high energy resolution and high spatial resolution in 3
dimensions and determine the correct interaction sequence using Compton
reconstruction algorithms. The simulated LXePET imaging performance was
evaluated by computing the noise equivalent count rate, the sensitivity and
point spread function for a point source, and by examining the image quality
using a micro-Derenzo phantom according to the NEMA-NU4 standard. Results of
these simulation studies included NECR peaking at 1326 kcps at 188 MBq (705
kcps at 184 MBq) for an energy window of 450 - 600 keV and a coincidence window
of 1 ns for mouse (rat) phantoms. The absolute sensitivity at the center of the
field of view was 12.6%. Radial, tangential, and axial resolutions of 22Na
point sources reconstructed with a list-mode maximum likelihood expectation
maximization algorithm were <= 0.8 mm (FWHM) throughout the field of view.
Hot-rod inserts of < 0.8 mm diameter were resolvable in the transaxial image of
a micro-Derenzo phantom. The simulations show that a liquid xenon system would
provide new capabilities for significantly enhancing PET images
Effect of defoliation management and plant arrangement on yield and N2 fixation of berseem-annual ryegrass mixture
The research was carried out in a Mediterranean semi-arid environment on berseem clover, annual
ryegrass and their mixture to study the effect of defoliation management [date of \ufb01rst cut (FC) 85, 119,
140, 169 days after sowing] and different plant arrangements (sowing the two components in alternate
rows or in the same row) on yields, N content, N2
\ufb01xation and N transfer. The experimental design was a
split-plot with four replications. The
15
N isotope dilution technique was used (8 kg N ha
\u20131
as ammonium
sulphate at 10 atom%
15
N excess) to evaluate the N2
\ufb01xation. Total seasonal DM yield was, on average,
signi\ufb01cantly higher for FC119 and FC140 (approx. 12.3 t ha
\u20131
) than for FC85 and FC169 (approx.
10.6 t ha
\u20131
). Plant arrangement did not signi\ufb01cantly in\ufb02uence total yield of the mixture. However, the
legume yield was higher (+20%; P<0.0001) in the same row than in alternate rows arrangement. N
content of ryegrass was signi\ufb01cantly higher in the mixtures than in pure stand and in the \u2018same row\u2019
plant arrangement than in the \u2018alternate rows\u2019. Intercropped berseem always had a signi\ufb01cant higher %
of Ndfa than the monocropped one (on average 74.7% and 57.7% respectively). The apparent transfer
of \ufb01xed N from berseem to ryegrass was not detected in either plant arrangement
- …
