research

Detailed study of SNR G306.3-0.9 using XMM-Newton and Chandra observations

Abstract

We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of SNR G306.3-0.9. A spatially-resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations were also used to constrain the progenitor supernova and study the environment in which the SNR evolved. The X-ray morphology of the remnant displays a non-uniform structure of semi-circular appearance, with a bright southwest region and very weak or almost negligible X-ray emission in its northern part. These results indicate that the remnant is propagating in a non-uniform environment as the shock fronts are encountering a high-density medium, where enhanced infrared emission is detected. The X-ray spectral analysis of the selected regions shows distinct emission-line features of several metal elements, confirming the thermal origin of the emission. The X-ray spectra are well represented by a combination of two absorbed thermal plasma models: one in equilibrium ionization with a mean temperature of ~0.19 keV, and another out of equilibrium ionization at a higher temperature of ~1.1 or 1.6-1.9 keV. For regions located in the northeast, central, and southwest part of the SNR, we found elevated abundances of Si, S, Ar, Ca, and Fe, typical of ejecta material. The outer regions located northwest and south show values of the abundances above solar but lower than to those found in the central regions. This suggests that the composition of the emitting outer parts of the SNR is a combination of ejecta and shocked material of the interstellar medium. The comparison between the S/Si, Ar/Si, and Ca/Si abundances ratios (1.75, 1.27, and 2.72 in the central region, respectively), favor a Type Ia progenitor for this SNR, a result that is also supported by an independent morphological analysis using X-ray and IR data.Comment: 8 pages, 7 figures. Accepted by Astronomy and Astrophysic

    Similar works