22 research outputs found

    An unprecedented arctic ozone depletion event during spring 2020 and its impacts across Europe

    Get PDF
    The response of the ozone column across Europe to the extreme 2020 Arctic ozone depletion was examined by analyzing ground-based observations at 38 European stations. The ozone decrease at the northernmost site, Ny-Ålesund (79°N) was about 43% with respect to a climatology of more than 30 years. The magnitude of the decrease declined by about 0.7% deg−1 moving south to reach nearly 15% at 40°N. In addition, it was found that the variations of the ozone column at each of the selected stations in March-May were similar to those observed at Ny-Ålesund but with a delay increasing to about 20 days at mid-latitudes with a gradient of approximately 0.5 days deg−1. The distributions of reconstructed ozone column anomalies over a sector covering a large European area show decreasing ozone that started from the north at the beginning of April 2020 and spread south. Such behavior was shown to be similar to that observed after the Arctic ozone depletion in 2011. Stratospheric dynamical patterns in March–May 2011 and during 2020 suggested that the migration of ozone-poor air masses from polar areas to the south after the vortex breakup caused the observed ozone responses. A brief survey of the ozone mass mixing ratios at three stratospheric levels showed the exceptional strength of the 2020 episode. Despite the stronger and longer-lasting Arctic ozone loss in 2020, the analysis in this work indicates a similar ozone response at latitudes below 50°N to both 2011 and 2020 phenomena

    Carbon Nanomaterials in Electrochemical Detection

    No full text
    High surface-to-volume ratio, high conductivity and electrocatalytic properties are some of the most interesting characteristics of carbon nanomaterials. Such exceptional properties have found a strong application in the field of electrochemical sensing. In this chapter we present the great relevance of the introduction of carbon nanomaterials, such as carbon nanotubes and graphene, for the development of new electrochemical sensors and biosensors. The possibility to exploit carbon nanomaterials for direct electrochemical sensing is illustrated. Furthermore, the easy modification of carbon materials with biomolecules enables the development of sophisticated and ultra-sensitive electrochemical sensors and biosensors for a plethora of important analytes and biomolecules, from DNA to cancer biomarkers. The possibility of coupling nanocarbon-based electrochemical sensors as detectors in separation techniques is briefly introduced. The most typical applications are described

    Dobson, Brewer, ERA-40 and ERA-Interim original and merged total ozone data sets – evaluation of differences: a case study, Hradec KrĂĄlovĂ© (Czech), 1961–2010

    No full text
    Homogenized data series of total ozone measurements taken by the regularly and well calibrated Dobson and Brewer spectrophotometers at Hradec Krålové (Czech) and the data from the re-analyses ERA-40 and ERA-Interim were merged and compared to investigate differences between the particular data sets originated in Central Europe, the Northern Hemisphere (NH) mid-latitudes. The Dobson-to-Brewer transfer function and the algorithm for approximation of the data from the re-analyses were developed, tested and applied for creation of instrumentally consistent and completed total ozone data series of the 50-yr period 1961–2010 of observations. This correction has reduced the well-known seasonal differences between Dobson and Brewer data below the 1% calibration limit of the spectrophotometers. Incorporation of the ERA-40 and ERA-Interim total ozone data on days with missing measurements significantly improved completeness and reliability of the data series mainly in the first two decades of the period concerned. Consistent behaviour of the original and corrected/merged data sets was found in the pre-ozone-hole period (1961–1985). In the post-Pinatubo (1994–2010) era the data series show seasonal differences that can introduce uncertainty in estimation of ozone recovery mainly in the winter-spring season when the effect of the Montreal Protocol and its Amendments is expected. All the data sets confirm substantial depletion of ozone also in the summer months that gives rise to the question about its origin. The merged and completed data series of total ozone will be further analyzed to quantify chemical ozone losses and contribution of natural atmospheric processes to the ozone depletion over the region. This case study points out the importance of selection and evaluation of the quality and consistency of the input data sets used in estimation of long-term ozone changes including recovery of the ozone layer over the selected areas. Data are available from the PANGAEA database at <a href="http://dx.doi.org/10.1594/PANGAEA.779819"target="_blank">doi:10.1594/PANGAEA.779819</a>

    Reconstruction and analysis of erythemal UV radiation time series from Hradec Krålové (Czech Republic) over the past 50 years

    No full text
    This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec KrĂĄlovĂ© (Czech Republic) in the period 1964–2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004–2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface

    La statistica per la gestione aziendale e le analisi di mercato

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale -. P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    A Spatial Data-Driven Approach for Mineral Prospectivity Mapping

    No full text
    Mineral prospectivity mapping is a crucial technique for discovering new economic mineral deposits. However, detailed knowledge-based geological exploration and interpretations generally involve significant costs, time, and human resources. In this study, an ensemble machine learning approach was tested using geoscience datasets to map Cu-Au and Pb-Zn mineral prospectivity in the Cobar Basin, NSW, Australia. The input datasets (magnetic, gravity, faults, electromagnetic, and magnetotelluric data layers) were chosen by considering their association with Cu-Au and Pb-Zn mineralization patterns. Three machine learning algorithms, namely random forest (RF), support vector machine (SVM), and maximum-likelihood (MaxL) classification, were applied to the input data. The results of the three algorithms were ensembled to produce Cu-Au and Pb-Zn prospectivity maps over the Cobar Basin with improved classification accuracy. The findings demonstrate good agreement with known mineral occurrence points and existing mineral prospectivity maps developed using the weights-of-evidence (WofE) method. The ability to capture training points accurately and the simplicity of the proposed approach make it advantageous over complex mineral prospectivity mapping methods, to serve as a preliminary evaluation technique. The methodology can be modified with different datasets and algorithms, facilitating the investigations of mineral prospectivity in other regions and providing guidance for more detailed, high-resolution geological investigations
    corecore