90 research outputs found

    Single Photon Source with Individualized Single Photon Certifications

    Get PDF
    As currently implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand. The scheme uses a heralded photon source based on parametric downconversion, but by effectively breaking the trigger detector area into multiple regions, we are able to extract more information about a heralded photon than is possible with a conventional arrangement. This scheme allows photons to be produced along with a quantitative ``certification'' that they are single photons. Some of the single-photon certifications can be significantly better than what is possible with conventional downconversion sources (using a unified trigger detector region), as well as being better than faint laser sources. With such a source of more tightly certified single photons, it should be possible to improve the maximum secure bit rate possible over a quantum cryptographic link. We present an analysis of the relative merits of this method over the conventional arrangement.Comment: 11 pages, 5 figures, SPIE Free-Space Laser Communication and Laser Imaging II. To appear in the proceeding of SPIE Free-Space Laser Communication and Laser Imaging II, vol 482

    An optical heterodyne densitometer

    Get PDF
    Researchers are developing an optical heterodyne densitometer with the potential to measure optical density over an unprecedented dynamic range with high accuracy and sensitivity. This device uses a Mach-Zender interferometer configuration with heterodyne detection to make direct comparisons between optical and RF attenuators. Researchers expect to attain measurements of filter transmittance down to 10 to the minus 12th power with better than 1 percent uncertainty. In addition, they intend to extend the technique to the problem of measuring low levels of light scattering from reflective and transmissive optics

    Optimizing single-photon-source heralding efficiency at 1550 nm using periodically poled lithium niobate

    Full text link
    We explore the feasibility of using high conversion-efficiency periodically-poled crystals to produce photon pairs for photon-counting detector calibrations at 1550 nm. The goal is the development of an appropriate parametric down-conversion (PDC) source at telecom wavelengths meeting the requirements of high-efficiency pair production and collection in single spectral and spatial modes (single-mode fibers). We propose a protocol to optimize the photon collection, noise levels and the uncertainty evaluation. This study ties together the results of our efforts to model the single-mode heralding efficiency of a two-photon PDC source and to estimate the heralding uncertainty of such a source.Comment: 14 pages, 2 tables and 3 figures, final version accepted by Metrologi

    A throughput optimal scheduling policy for a quantum switch

    Get PDF
    We study a quantum switch that creates shared end-to-end entangled quantum states to multiple sets of users that are connected to it. Each user is connected to the switch via an optical link across which bipartite Bell-state entangled states are generated in each time-slot with certain probabilities, and the switch merges entanglements of links to create end-to-end entanglements for users. One qubit of an entanglement of a link is stored at the switch and the other qubit of the entanglement is stored at the user corresponding to the link. Assuming that qubits of entanglements of links decipher after one time-slot, we characterize the capacity region, which is defined as the set of arrival rates of requests for end-to-end entanglements for which there exists a scheduling policy that stabilizes the switch. We propose a Max-Weight scheduling policy and show that it stabilizes the switch for all arrival rates that lie in the capacity region. We also provide numerical results to support our analysis

    Reduced Deadtime and Higher Rate Photon-Counting Detection using a Multiplexed Detector Array

    Full text link
    We present a scheme for a photon-counting detection system that can be operated at incident photon rates higher than otherwise possible by suppressing the effects of detector deadtime. The method uses an array of N detectors and a 1-by-N optical switch with a control circuit to direct input light to live detectors. Our calculations and models highlight the advantages of the technique. In particular, using this scheme, a group of N detectors provides an improvement in operation rate that can exceed the improvement that would be obtained by a single detector with deadtime reduced by 1/N, even if it were feasible to produce a single detector with such a large improvement in deadtime. We model the system for continuous and pulsed light sources, both of which are important for quantum metrology and quantum key distribution applications.Comment: 6 figure

    Experimental Bounds on Classical Random Field Theories

    Full text link
    Alternative theories to quantum mechanics motivate important fundamental tests of our understanding and descriptions of the smallest physical systems. Here, using spontaneous parametric downconversion as a heralded single-photon source, we place experimental limits on a class of alternative theories, consisting of classical field theories which result in power-dependent normalized correlation functions. In addition, we compare our results with standard quantum mechanical interpretations of our spontaneous parametric downconversion source over an order of magnitude in intensity. Our data match the quantum mechanical expectations, and do not show a statistically significant dependence on power, limiting on quantum mechanics alternatives which require power-dependent autocorrelation functions.Comment: 11pages, 2 figure

    Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    Full text link
    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.Comment: 14 pages, 23 figure

    Experimental joint signal-idler quasi-distributions and photon-number statistics for mesoscopic twin beams

    Get PDF
    Joint signal-idler photoelectron distributions of twin beams containing several tens of photons per mode have been measured recently. Exploiting a microscopic quantum theory for joint quasi-distributions in parametric down-conversion developed earlier we characterize properties of twin beams in terms of quasi-distributions using experimental data. Negative values as well as oscillating behaviour in quantum region are characteristic for the subsequently determined joint signal-idler quasi-distributions of integrated intensities. Also the conditional and difference photon-number distributions are shown to be sub-Poissonian and sub-shot-noise, respectively.Comment: 7 pages, 6 figure
    • …
    corecore