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Joint signal-idler photoelectron distributions of twin beams containing several tens of photons per mode

have been measured recently. Exploiting a microscopic quantum theory for joint quasidistributions in paramet-

ric down-conversion developed earlier we characterize properties of twin beams in terms of quasidistributions

using experimental data. Negative values as well as oscillating behavior in the quantum region are character-

istic for the subsequently determined joint signal-idler quasidistributions of integrated intensities. Also the

conditional and difference photon-number distributions are shown to be sub-Poissonian and sub-shot-noise,

respectively.
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I. INTRODUCTION

The process of spontaneous parametric down-conversion

f1–3g is one of the fundamental nonlinear quantum processes

that can be understood in terms of created and annihilated

photon pairs. This highly nonclassical origin of the generated

optical fields is responsible for their unusual properties. They

have occurred to be extraordinarily useful in verification of

fundamental laws of quantum mechanics using tests of Bell

inequalities f3g, generation of Greenberger-Horne-Zeilinger

states f4g, demonstration of quantum teleportation f5g, quan-

tum cryptography f6g, dense coding, and many other “quan-

tum protocols” f7g. Fields composed of photon pairs have

already found applications, e.g., in quantum cryptography f6g
or metrology f8g. The description of this process has been

elaborated from several points of view for beams containing

just one photon pair with a low probability f9–13g as well as

for beams in which many photon pairs occur f14g. Also

stimulated emission of photon pairs has been investigated

f15–17g.
Recent experiments f18–22g sand references thereind have

provided experimental joint signal-idler photoelectron distri-

butions of twin beams containing up to several thousands of

photon pairs. Extremely sensitive photodiodes, special

single-photon avalanche photodiodes f23g, superconducting

bolometers f24g, time-multiplexed fiber-optics detection

loops f25–28g, intensified charge-coupled device cameras

f19,29g, or methods measuring attenuated beams f30,31g are

available at present as detection devices able to resolve pho-

ton numbers. Also homodyne detection has been applied to

determine intensity correlations of twin beams f32,33g.
These advances in experimental techniques have stimulated

the development of a detailed microscopic theory able to

describe such beams and give an insight into their physical

properties. A theory based on multimode description of the

generated fields has been elaborated both for spontaneous

f34g as well as stimulated processes f35g. This theory allows

one to determine the joint signal-idler quasidistribution of

integrated intensities from measured joint signal-idler photo-

electron distributions. Considering phases of multimode

fields generated in this spontaneous process to be completely

random, the joint signal-idler quasidistribution of integrated

intensities gives us a complete description of the generated

twin beams. As a consequence of pairwise emission the qua-

sidistribution of integrated intensities has a typical shape and

attains negative values in some regions. This quasidistribu-

tion has been already experimentally reached f19,20g for

twin beams containing up to several tens of photon pairs but

with mean numbers of photons per mode being just a frac-

tion of one. Here, we report on experimental determination

of the joint signal-idler quasidistribution of integrated inten-

sities for twin beams containing several tens of photons per

mode. Such a system may be considered as mesoscopic and

this makes its properties extraordinarily interesting for an

investigation.

Photon-number distributions and quasidistributions of in-

tegrated intensities provided by theory are contained in Sec.

II. Section III is devoted to the analysis of experimental data.

Conclusions are drawn in Sec. IV.

II. PHOTON-NUMBER DISTRIBUTIONS AND

QUASIDISTRIBUTIONS OF INTERATED INTENSITIES

In the experiment, whose layout is sketched in Fig. 1 sfor

details, see f21gd, the third harmonic field swavelength

349 nm and time duration 4.45 psd of an amplified mode-

locked Nd:YLF laser with repetition rate of 500 Hz sHigh Q

Laser Production, Hohenems, Austriad is used to pump para-

metric down-conversion in a BBO crystal sFujian Castech

Crystals, Fuzhou, Chinad cut for type-I interaction. The

down-converted beams at wavelengths of 632.8 and

778.2 nm are selected by two 100 mm diameter apertures

and directed into two amplified pin photodiodes sS5973-02*perina@prfnw.upol.cz
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and S3883, Hamamatsu Photonics K.K., Japand using lenses

of appropriate focal lengths ssee Fig. 1d. The output current

pulses are digitized and processed by a computer. The overall

detection quantum efficiencies h are 55% for both arms.

First skmld and second skm2ld moments of photoelectron dis-

tributions for both signal and idler beams as well as correla-

tion of photoelectron numbers skm1m2ld in the signal and

idler beams are obtained experimentally. The additive noise

present during detection can be measured separately and sub-

tracted from the measured data. The measured moments of

photoelectron numbers can be corrected also for the overall

quantum efficiency and we then obtain the moments for pho-

tons. The symbol kn1l skn2ld means the mean photon number

in the signal sidlerd field, kn1
2l skn2

2ld denotes the second mo-

ment of signal- sidler-d field photon-number distribution, and

kn1n2l gives correlations in the number of signal and idler

photons.We note that moments of photon-number distribu-

tions are obtained using the relations

knil = kmil/h ,

kni
2l = kmi

2l/h2 − s1 − hdkmil/h
2, i = 1,2,

kn1n2l = km1m2l/h2. s1d

Moments of integrated intensities can be directly derived

from moments of photon numbers:

kWil = knil ,

kWi
2l = kni

2l − knil, i = 1,2,

kW1W2l = kn1n2l . s2d

Multimode theory of down-conversion developed in f34g us-

ing a generalized superposition of signal and noise provides

the following relations between the above mentioned experi-

mental quantities and quantum noise coefficients B1, B2, D12,

and the number M of modes:

kWil = MBi,

ksDWid
2l = MBi

2, i = 1,2,

kDW1DW2l = MuD12u
2. s3d

The coefficient Bi gives mean number of photons in mode i

and D12 characterizes mutual correlations between the signal

and idler fields. Inverting relations in Eqs. s3d we arrive at

the expressions for parameters B1, B2, M, and D12:

Bi = ksDWid
2l/kWil ,

Mi = kWil
2/ksDWid

2l, i = 1,2,

uD12u = ÎkDW1DW2l/M . s4d

As follows from Eqs. s4d, the number M of modes can be

determined from experimental data measured either in the

signal or idler field. This means that the experimental data

give two numbers M1 and M2 of modes as a consequence of

nonperfect alignment of the setup and nonperfect exclusion

of noise from the data. On the other hand, there occurs only

one number M of modes snumber of degrees of freedomd in

the theory f34g as it assumes that all pairs of mutually en-

tangled signal- and idler-field modes are detected at both

detectors. Precise fulfillment of this requirement can hardly

be reached under real experimental conditions. However, ex-

perimental data with M1<M2 can be obtained.

Joint signal-idler photon-number distribution psn1 ,n2d for

multithermal field with M degrees of freedom and composed

of photon pairs can be derived in the form f34g

psn1,n2d =
1

GsMd

s− Kdn2sB1 + Kdn1−n2

s1 + B1 + B2 + Kdn1+M

3 o
r=maxs0,n2−n1d

n2 Gsn1 + M + rd

r ! sn2 − rd ! sn1 − n2 + rd!

3
fsB1 + KdsB2 + Kdgr

s− Kdrs1 + B1 + B2 + Kdr
. s5d

The determinant K introduced in Eq. s5d and given by the

expression

K = B1B2 − uD12u
2 s6d

is crucial for the judgement of classicality of a field. Nega-

tive values of the determinant K mean that a given field

cannot be described classically as in case of the considered

field composed of photon pairs. In Eq. s5d, the quantities

B1+K and B2+K cannot be negative and can be considered

as characteristics of fictitious noise present in the signal and

idler fields, respectively. The theory for an ideal lossless case

gives K=−B1=−B2 together with the joint photon-number

distribution psn1 ,n2d in the form of diagonal Mandel-Rice

distribution. On the other hand, inclusion of losses and ex-

ternal noise results in nondiagonal photon-number distribu-

tion psn1 ,n2d as a consequence of the fact that not all de-

tected photons are paired. We note that pairing of photons

leads to higher values of elements psn1 ,n2d of the joint
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FIG. 1. sColor onlined Sketch of the experimental setup.

Nd:YLF, amplified ps-pulsed laser source; BBO I, nonlinear crystal;

f , f1,2, lenses; PH1,2, 100 mm diameter pinholes; D1,2, pin detectors;

BP1,2, band-pass filters; ND, adjustable neutral-density filter. The

boxes on the right-hand side indicate the parts of the signal ampli-

fication and acquisition chains.
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signal-idler photon-number distribution around the diagonal

n1=n2 that violate a classical inequality derived in f19g.
A compound Mandel-Rice formula gives the joint signal-

idler photon-number distribution psn1 ,n2d at the border be-

tween the classical and nonclassical characters of the field

sK=0d:

psn1,n2d =
Gsn1 + n2 + MdB1

n1B2
n2

GsMdn1n2s1 + B1 + B2dn1+n2+M
. s7d

If the number M of modes is large compared to mean values

kn1l and kn2l si.e., for B1, B2, and uD12u being smalld the

expression in Eq. s7d can roughly be approximated by a

product of two Poissonian distributions. If K.0 or K,0,

weak classical or quantum fluctuations remain in this Pois-

son limit of a large number M of modes, as follows from the

normal generating function f34g in the form Gsl1 ,l2d
<exps−l1kn1l−l2kn2l+l1l2M uD12u

2d valid in this approxi-

mation. Thus there are always mode correlations in agree-

ment with the third formula in Eq. s3d.
Declination from an ideal diagonal distribution psn1 ,n2d

caused by losses can be characterized using conditional idler-

field photon-number distribution pc,2sn2 ;n1d measured under

the condition of detected n1 signal photons and determined

along the formula:

pc,2sn2;n1d = psn1,n2dYo
k=0

`

psn1,kd . s8d

Substitution of Eq. s5d in Eq. s8d leads to the conditional

idler-field photon-number distribution pc,2 with Fano factor

Fc,2:

Fc,2sn1d = 1 +
s1 + M/n1dfsB2 + Kd/s1 + B1dg2 − sK/B1d2

s1 + M/n1dsB2 + Kd/s1 + B1d − K/B1

< 1 + K/B1. s9d

As an approximate expression for the Fano factor Fc,2 in Eq.

s9d svalid for K<−B2d indicates negative values of the de-

terminant K are necessary to observe sub-Poissonian condi-

tional photon-number distributions. Sub-Poissonian condi-

tional distribution pc,2 emerges from the formula in Eq. s5d
that is a sum of positive terms in this case. For the ideal

lossless case, K=−B1=−B2 holds and the Fano factor Fc,2

equals 0. On the other hand, positive values of the determi-

nant K mean that the sum in Eq. s5d contains large terms with

alternating sings sthis may lead to numerical errors in sum-

mationd and so the conditional distribution pc,2 is super-

Poissonian. For instance, for K small compared to B1, Fc,2

=1+ sB2+Kd / s1+B1d. We note that, in this approximation,

the value of Fano factor Fc,2 equals the value of coefficient R

quantifying sub-shot-noise correlations and being defined in

Eq. s11d below.

Pairing of photons in the detected signal and idler fields

leads to narrowing of distribution p− of the difference n1

−n2 of signal- and idler-field photon numbers:

p−snd = o
n1,n2=0

`

dn,n1−n2
psn1,n2d s10d

and d denotes the Kronecker symbol. If variance of the dif-

ference n1−n2 of signal- and idler-field photon numbers is

less than the sum of mean photon numbers in the signal and

idler fields we speak about sub-shot-noise correlations and

characterize them by coefficient R f21g:

R =
kfDsn1 − n2dg2l

kn1l + kn2l
, 1. s11d

Joint signal-idler photon-number distribution psn1 ,n2d
and joint signal-idler quasidistribution P1sW1 ,W2d of inte-

grated intensities belonging to normally ordered operators

are connected through Mandel’s detection equation f3,36g:

psn1,n2d =
1

n1n2

E
0

`

dW1E
0

`

dW2W1
n1W2

n2

3exps− W1 − W2dP1sW1,W2d . s12d

The relation in Eq. s12d can be generalized to an arbitrary

ordering of field operators f3,34g and can be inverted in

terms of series of Laguerre polynomials. The range of con-

vergence of these series is determined under the condition

s#sth where sth is given in Eq. s15d later. These series define

quasidistributions for s.sth.

Provided that an s-ordered determinant Ks, Ks=B1sB2s

− uD12u
2 fBi,s=Bi+ s1−sd /2, i=1,2g, is positive the s-ordered

joint signal-idler quasidistribution PssW1 ,W2d of integrated

intensities exists as an ordinary function f34g which cannot

take on negative values:

PssW1,W2d =
1

GsMdKs
MSKs

2
W1W2

uD12u
2 DsM−1d/2

3expS−
sB2sW1/B1s + W2dB1s

Ks

D
3 IM−1S2Î uD12u

2W1W2

Ks
2 D . s13d

The symbol IM denotes the modified Bessel function and G
stands for the G function.

If the s-ordered determinant Ks is negative, the joint

signal-idler quasidistribution Ps of integrated intensities ex-

ists in general as a generalized function that can be negative

or even have singularities. It can be approximated by the

following formula f34g:

PssW1,W2d <
AsW1W2dsM−1d/2

pGsMdsB1sB2sd
M/2

expS−
W1

2B1s

−
W2

2B2s

D
3 sincFASB2s

B1s

W1 − W2DG; s14d

sincsxd=sinsxd /x, A= s−KsB1s /B2sd
−1/2. Oscillating behavior

is typical for the quasidistribution Ps written in Eq. s14d.
There exists a threshold value sth of the ordering param-

eter s for given values of parameters B1, B2, and D12 deter-

mined by the condition Ks=0:
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sth = 1 + B1 + B2 − ÎsB1 + B2d2 − 4K; s15d

−1#sth#1. Quasidistributions Ps for s#sth are ordinary

functions with non-negative values whereas those for s.sth

are generalized functions with negative values and oscilla-

tions.

Similarly as for photon numbers we can define quasidis-

tribution Ps,− of the difference W1−W2 of signal- and idler-

field integrated intensities as a quantity useful for description

of photon pairing:

Ps,−sWd = E
0

`

dW1E
0

`

dW2dsW − W1 + W2dPssW1,W2d .

s16d

The quasidistribution Ps,− oscillates and takes on negative

values as a consequence of pairwise character of the detected

fields if s$sth.

There exists a relation between variances of the difference

n1−n2 of signal- and idler-field photon numbers and the dif-

ference W1−W2 of signal- and idler-field integrated intensi-

ties:

kfDsn1 − n2dg2l = kn1l + kn2l + kfDsW1 − W2dg2l . s17d

According to Eq. s17d negative values of the quasidistribu-

tion Ps,− sas well as these of quasidistribution Psd are neces-

sary to observe sub-shot-noise correlations in signal- and

idler-field photon numbers as described by the condition R

,1 in Eq. s11d.

III. EXPERIMENTAL DISTRIBUTIONS

As an example, we analyze the following experimental

data appropriate for photons and derived from the experi-

mental data for photoelectrons given in f21g using relations

in Eqs. s1d fh=0.55g:

kn1l = 959.21, kn2l = 1078.3,

kn1
2l = 971 829.7, kn2

2l = 1 218 608,

kn1n2l = 1 088 083. s18d

These data thus characterize photon fields, as they have been

obtained after correction for the nonunit detection efficiency.

Formulas in Eqs. s2d and s4d then give mean number B1 of

signal photons per mode, mean number B2 of idler photons

per mode, number M1 of signal-field modes, and number M2

of idler-field modes:

B1 = 52.95, B2 = 50.81,

M1 = 18.11, M2 = 21.22. s19d

Numbers M1 and M2 of modes given in Eqs. s19d and deter-

mined from data characterizing signal sM1d and idler sM2d
fields slightly differ owing to experimental imperfections.

That is why we use a mean number M of modes fM= sM1

+M2d /2g and determine the coefficient D12 along the relation

in Eqs. s4d:

M = 19.66, uD12u = 52.29. s20d

The determinant K given in Eq. s6d then equals −44.23, i.e.,

the measured field is nonclassical. The coefficient R defined

in Eq. s11d equals 0.19 s−7.2 dB reduction of vacuum fluc-

tuationsd and this means that fluctuations in the difference

n1−n2 of signal and idler photon numbers are below shot-

noise level. This also means fsee Eq. s17dg that variance

kfDsW1−W2dg2l of the difference of signal- and idler-field

integrated intensities is negative (kfDsW1−W2dg2l=−1654).

Negative value of this variance is caused by the pairwise

character of the detected fields, which leads to strong corre-

lations in integrated intensities W1 and W2. Also the value of

covariance C sC= kDn1Dn2l /ÎkfDn1g2lkfDn2g2ld of signal n1

and idler n2 photon numbers close to 1 sC=0.997d is evi-

dence of a strong pairwise character of the detected fields.

We note that also a two-mode principal squeeze variance l
characterizing phase squeezing and related to one pair of

modes can be determined along the formula

l = 1 + B1 + B2 − 2uD12u . s21d

We arrive at l=0.18 using our data in Eq. s21d and so the

generated field is also phase squeezed.

The joint signal-idler photon-number distribution

psn1 ,n2d determined along the formula in Eq. s5d for values

of parameters in Eqs. s19d and s20d is shown in Fig. 2. Strong

correlations in signal-field n1 and idler-field n2 photon num-

bers are clearly visible. Nonzero elements of the joint

photon-number distribution psn1 ,n2d are localized around a

line given by the condition n1<n2 as documented in contour

plot in Fig. 2.

FIG. 2. Joint signal-idler photon-number distribution

psn1 ,n2d.

PEŘINA et al. PHYSICAL REVIEW A 76, 043806 s2007d

043806-4



Conditional distributions pc,2 of idler-field photon num-

bers n2 conditioned by detection of a given number n1 of

signal photons defined in Eq. s8d are also sub-Poissonian ssee

Fig. 3d. The greater the value of the number n1 of signal

photons, the smaller the value of Fano factor Fc,2 given in

Eq. s9d. If mean numbers kn1l and kn2l of signal- and idler-

field photons are small compared to the number M of modes

the joint photon-number distribution psn1 ,n2d behaves like a

product of two Poissonian distributions and so Fc,2<1. Fano

factor Fc,2 reaches its asymptotic value after certain value of

the number n1 of signal-field photons fsee discussion below

Eq. s7dg.
Strong correlations in signal-field n1 and idler-field n2

photon numbers lead to sub-Poissonian distribution p− of the

difference n1−n2 of photon numbers defined in Eq. s10d ssee

Fig. 4d.
Joint signal-idler quasidistributions PssW1 ,W2d of inte-

grated intensities differ qualitatively according to the value

of ordering parameter s ssth=0.15 for the experimental datad.

Nonclassical character of the detected fields is smoothed out

sKs=2.66.0d for the value of s equal to 0.1 as shown in Fig.

5sad. On the other hand, the value of s equal to 0.2 is suffi-

cient to observe quantum features sKs=−2.53,0d in the

joint signal-idler quasidistribution PssW1 ,W2d that is plotted

in Fig. 5sbd. In this case oscillations and negative values

FIG. 3. Fano factor Fc,2 of the conditional signal-idler photon-

number distribution pc,2 as a function of the number n1 of detected

signal photons.

FIG. 4. Distributions p−snd of the difference n of signal-field

sn1d and idler-field sn2d photon numbers; n=n1−n2. Solid curve

without symbols characterizes the experimental data. Solid curve

with + gives the distribution obtained from the joint signal-idler

photon-number distribution in the form of product of two indepen-

dent Poissonian distributions with mean photon numbers given by

experimental data and is shown for comparison.

(a)

(b)

FIG. 5. Joint signal-idler quasidistributions PssW1 ,W2d of inte-

grated intensities of signal sW1d and idler sW2d fields for s=0.1 sad
and s=0.2 sbd.
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occur in the graph of the joint quasidistribution PssW1 ,W2d.
Determination of the number M of modes for the overall

field has to be done carefully because it might happen that

the theory shows nonphysical results. There are three condi-

tions determining the region with nonclassical behavior: K

,0, K+B1.0, and K+B2.0. These conditions can be

transformed into the following inequalities:

B1B2 , uD12u
2 , B1B2 + minsB1,B2d , s22d

where min denotes minimum value of its arguments. If sub-

shot-noise reduction in fluctuations of the difference n1−n2

of signal- and idler-field photon numbers is assumed

(implyingkfDsW1−W2dg2l,0), even stronger conditions can

be derived:

B1B2 # sB1
2 + B2

2d/2 , uD12u
2 , B1B2 + minsB1,B2d ,

s23d

and we therefore need to fulfill the inequality sB1−B2d2

#2 minsB1 ,B2d. Assuming B1$B2 we arrive at the final

condition:

B1 # B2 + Î2B2. s24d

The condition in Eq. s24d gives limitation to the lowest pos-

sible physical value of the number M of modes. Increasing

the value of number M of modes from this boundary value

the field behaves nonclassically first and then its properties

become classical. The nonclassical character of the detected

field is given by the condition K,0 in theory. In experiment

we usually measure coefficient R given in Eq. s11d in order

to prove the nonclassical character of the field given by the

condition R,1. According to the developed theory f34g, if

the field is classical sK.0d, then there is no sub-shot-noise

reduction in fluctuations of the difference of signal- and

idler-field photon numbers sR.1d. On the other hand, the

situation is more complicated for nonclassical fields with K

,0. Provided that B1=B2=B, the negative value of the de-

terminant K implies B2− uD12u
2,0 and kfDsW1−W2dg2l

=2MsB2− uD12u
2d,0. Thus the use of the relation in Eq. s17d

gives R,1, i.e., we have sub-shot-noise reduction of fluc-

tuations in the difference of photon numbers. If B1ÞB2, it

may happen that R$1, i.e., nonclassicality of the field is not

observed in sub-shot-noise reduction of fluctuations of the

difference of photon numbers. We note that even conditional

photon-number distributions pc,2 can remain sub-Poissonian

in this case.

The above discussion has been devoted to statistical prop-

erties of photons. Qualitatively similar results can be ob-

tained also for photoelectrons. Quantum Burgess theorem as-

sures that sub-Poissonian photoelectron distribution occurs

provided that photon-number distribution is also sub-

Poissonian fFm−1=hsFn−1d, Fn sFmd means the Fano factor

for photons sphotoelectronsd, h is the detection efficiencyg.
Photoelectron distributions are noisier compared to photon-

number distributions and that is why nonclassical properties

of photoelectron distributions are weaker.

IV. CONCLUSIONS

The nonclassical character of mesoscopic twin beams

containing several tens of photon pairs per mode has been

demonstrated using experimental data. Joint signal-idler

photon-number distribution, its conditional photon-number

distributions, distribution of the difference of signal- and

idler-field photon numbers, and joint signal-idler quasidistri-

butions of integrated intensities have been determined to pro-

vide evidence of nonclassicality of the detected twin beams.
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