224 research outputs found

    Surface plasmon resonance biosensors for highly sensitive detection in real samples

    Get PDF
    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities

    Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factors

    Get PDF
    Póster presentado al 1st Senspol Workshop: SENSPOL European Thematic Network (EC Environmental and Climate Programma) Sensing Technologies for Contaminated Sites and Groundwater celebrado en Alcala de Henares (Madrid-España) en 2001.Peer reviewe

    Lab-on-a-chip platforms based on highly sensitive nanophotonic Si biosensors for single nucleotide DNA testing

    Get PDF
    In order to solve the drawbacks of sensitivity and portability in optical biosensors we have developed ultrasensitive and miniaturized photonic silicon sensors able to be integrated in a "lab-on-a-chip" microsystem platform. The sensors are integrated Mach-Zehnder interferometers based on TIR optical waveguides (Si/SiO2/Si3N4) of micro/nanodimensions. We have applied this biosensor for DNA testing and for detection of single nucleotide polymorphisms at BRCA-1 gene, involved in breast cancer development, without target labeling. The oligonucleotide probe is immobilized by covalent attachment to the sensor surface through silanization procedures. The hybridization was performed for different DNA target concentrations showing a lowest detection limit at 10 pM. Additionally, we have detected the hybridization of different concentrations of DNA target with two mismatching bases corresponding to a mutation of the BRCA-1 gene. Following the way of the lab-on-a-chip microsystem, integration with the microfluidics has been achieved by using a novel fabrication method of 3-D embedded microchannels using the polymer SU-8 as structural material. The optofluidic chip shows good performances for biosensing

    Detection and Quantification of HspX Antigen in Sputum Samples Using Plasmonic Biosensing : Toward a Real Point-of-Care (POC) for Tuberculosis Diagnosis

    Get PDF
    Advancements that occurred during the last years in the diagnosis of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis infection, have prompted increased survival rates of patients. However, limitations related to the inefficiency of an early detection still remain; some techniques and laboratory methods do not have enough specificity and most instruments are expensive and require handling by trained staff. In order to contribute to a prompt and effective diagnosis of tuberculosis, we report the development of a portable, user-friendly, and low-cost biosensor device for its early detection. By using a label-free surface plasmon resonance (SPR) biosensor, we have established a direct immunoassay for the direct detection and quantification of the heat shock protein X (HspX) of Mtb, a well-established biomarker of this pathogen, directly in pretreated sputum samples. The method relies on highly specific monoclonal antibodies that are previously immobilized on the plasmonic sensor surface. This technology allows for the direct detection of the biomarker without amplification steps, showing a limit of detection (LOD) of 0.63 ng mL-1 and a limit of quantification (LOQ) of 2.12 ng mL-1. The direct analysis in pretreated sputum shows significant differences in the HspX concentration in patients with tuberculosis (with concentration levels in the order of 116-175 ng mL-1) compared with non-tuberculosis infected patients (values below the LOQ of the assay)

    Understanding the everyday designer in organisations

    Get PDF
    This paper builds upon the existing concept of an everyday designer as a non-expert designer who carries out design activities using available resources in a given environment. It does so by examining the design activities undertaken by non-expert, informal, designers in organisations who make use of the formal and informal technology already in use in organisations while designing to direct, influence, change or transform the practices of people in the organisation. These people represent a cohort of designers who are given little attention in the literature on information systems, despite their central role in the formation of practice and enactment of technology in organisations. The paper describes the experiences of 18 everyday designers in an academic setting using three concepts: everyday designer in an organisation, empathy through design and experiencing an awareness gap. These concepts were constructed through the analysis of in-depth interviews with the participants. The paper concludes with a call for tool support for everyday designers in organisations to enable them to better understand the audience for whom they are designing and the role technology plays in the organisation
    corecore