2,481 research outputs found

    Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry

    Full text link
    Terahertz time-domain spectroscopy and scanning probe potentiometry were used to investigate charge trapping in polymer field-effect transistors fabricated on a silicon gate. The hole density in the transistor channel was determined from the reduction in the transmitted terahertz radiation under an applied gate voltage. Prolonged device operation creates an exponential decay in the differential terahertz transmission, compatible with an increase in the density of trapped holes in the polymer channel. Taken in combination with scanning probe potentionmetry measurements, these results indicate that device degradation is largely a consequence of hole trapping, rather than of changes to the mobility of free holes in the polymer.Comment: 4 pages, 3 figure

    Statistical mechanics of temporal association in neural networks with transmission delays

    Get PDF
    We study the representation of static patterns and temporal sequences in neural networks with signal delays and a stochastic parallel dynamics. For a wide class of delay distributions, the asymptotic network behavior can be described by a generalized Gibbs distribution, generated by a novel Lyapunov functional for the determination dynamics. We extend techniques of equilibrium statistical mechanics so as to deal with time-dependent phenomena, derive analytic results for both retrieval quality and storage capacity, and compare them with numerical simulations

    Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons

    Get PDF
    Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation

    Farmers’ management of functional biodiversity goes beyond pest management in organic European apple orchards

    Get PDF
    Supporting functional biodiversity (FB), which provides natural pest regulation, is an environmentally sound and promising approach to reduce pesticide use in perennial cultures such as apple, especially in organic farming. However, little is known about farmers’ practices and motivations to implement techniques that favor FB, especially whether or not they really expect anything from FB in terms of pest regulation. In fact, FB-supporting techniques (FB-techniques) are massively questioned by practitioners due to inadequate information about their effectiveness. An interview survey was performed in eight European countries(i) to describe farmers’ practices and identify promising FB-techniques: (ii) to better understand their perceptions of and values associated with FB; and (iii) to identify potential drivers of (non-)adoption. Fifty-five advisors and 125 orchard managers with various degrees of experience and convictions about FB were interviewed and a total of 24 different FB-techniques which can be assigned to three different categories (ecological infrastructures, farming practices and redesign techniques) were described. Some were well-established measures (e.g., hedges and bird houses), while others were more marginal and more recent (e.g., animal introduction and compost). On average, farmers combined more than four techniques that had been implemented over a period of 13 years, especially during their establishment or conversion period. In general, it was difficult for farmers to evaluate the effectiveness of individual FB-techniques on pest regulation. They considered FB-techniques as a whole, targeting multiple species, and valued multiple ecosystem services in addition to pest regulation. The techniques implemented and their associated values differed among farmers who adopted various approaches towards FB. Three different approaches were defined: passive, active and integrated. Their appraisal of FB is even more complex because it may change with time and experience. These findings provide empirical evidence that the practical implementation of promising techniques remains a challenge, considering the diversity of situations and evaluation criteria. Increased cooperation between researchers, farmers and advisors should more effectively target research, advisory support and communication to meet farmers’ needs and perceptions

    Measuring the equation of state of a hard-disc fluid

    Full text link
    We use video microscopy to study a two-dimensional (2D) model fluid of charged colloidal particles suspended in water and compute the pressure from the measured particle configurations. Direct experimental control over the particle density by means of optical tweezers allows the precise measurement of pressure as a function of density. We compare our data with theoretical predictions for the equation of state, the pair-correlation function and the compressibility of a hard-disc fluid and find good agreement, both for the fluid and the solid phase. In particular the location of the transition point agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio

    Lorentz angle measurements in irradiated silicon detectors between 77 K and 300 K

    Get PDF
    Future experiments are using silicon detectors in a high radiation environment and in high magnetic fields. The radiation tolerance of silicon improves by cooling it to temperatures below 180 K. At low temperatures the mobility increases, which leads to larger deflections of the charge carriers by the Lorentz force. A good knowledge of the Lorentz angle is needed for design and operation of silicon detectors. We present measurements of the Lorentz angle between 77 K and 300 K before and after irradiation with a primary beam of 21 MeV protons.Comment: 13 pages, 9 figures, submitted to ICHEP2000, Osaka, Japa

    On the Fourier transform of the characteristic functions of domains with C1C^1 -smooth boundary

    Full text link
    We consider domains D⊆RnD\subseteq\mathbb R^n with C1C^1 -smooth boundary and study the following question: when the Fourier transform 1D^\hat{1_D} of the characteristic function 1D1_D belongs to Lp(Rn)L^p(\mathbb R^n)?Comment: added two references; added footnotes on pages 6 and 1

    Impact of nuclear lattice relaxation on the excitation energy transfer along a chain of pi-conjugated molecules

    Get PDF
    We have investigated the extent to which delocalization of the ground-state and excited-state wave functions of a -conjugated molecule affects the excitation energy transfer Í‘EETÍ’ between such molecules. Using femtosecond photoluminescence spectroscopy, we experimentally monitored the EET along well-defined supramolecular chains of extended conjugated molecules. Comparison with Monte Carlo simulations reveals that only a model incorporating a localized emitter and delocalized absorber wave function accurately reproduces these data. Our findings demonstrate that self-localization of the initially excited state, following fast relaxation of the nuclear lattice, has a significant impact on the EET dynamics in molecular assemblies

    Memorandum on Reopening the Dodd-Frank Act Section 956 Incentive Compensation Rule

    Get PDF
    Professor Michael Herz, along with four other administrative law professors, sent a letter to six agencies about legal options regarding a long-delayed rule aimed at executive compensation

    Chromophores in molecular nanorings : when is a ring a ring?

    Get PDF
    The topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully π-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppressed as a result of symmetry constraints. In contrast, the simple Kasha model predicts an enhancement in the radiative rate for corresponding linear oligomers. Here we investigate such effects in linear and cyclic conjugated molecules containing between 6 and 42 butadiyne-linked porphyrin units (corresponding to 600 C–C bonds) as pure monodisperse oligomers. We demonstrate that as the diameter of the nanorings increases beyond ∼10 nm, its electronic properties tend toward those of a similarly sized linear molecule as a result of excitation localization on a subsegment of the ring. However, significant differences persist in the nature of the emitting dipole polarization even beyond this limit, arising from variations in molecular curvature and conformation
    • …
    corecore