6,758 research outputs found

    Knowledge and technology transfer from universities to industries: A case study approach from the built environment field

    Get PDF
    Enabling kowledge societies and knowledge based economies is a key policy in the UK. KTP (Knowledge Transfer Partnership) scheme initiated by the Technology Strategy Board is a pathway for collaboration and partnerships between Higher Education institutions and companies to transfer innovative knowledge based solutions from universities to businesses in order to equip them with the leading edge knowledge and technology infrastructure for sustainable long term competitive advantages in both national and international market. The paper explains a KTP project between the University of Salford and John McCall Architects (JMA) in Liverpool in the UK that aimed to identify, map and re-engineer JMA’s strategic and operational change processes through Lean thinking and the implementation of Building Information Modelling (BIM), which is a foundational tool for implementing an efficient process and invariably leads to lean-orientated, team based approach to design and construction by enabling the intelligent interrogation of designs; provide a quicker and cheaper design production; better co-ordination of documentation; more effective change control; less repetition of processes; a better quality constructed product; and improved communication both for JMA and across the supply chain whereas it provided opportunity to increase business relevance of knowledge based research and teaching for the Higher Education. Case Study approach is employed in the paper and the KTP project is assessed for i) how it helped in improving JMA’s knowledge and technology capacity in conducting their practice, and, ii) how it helped the university in improving its knowledge based research and teaching

    Technology adoption in the BIM implementation for lean architectural practice

    Get PDF
    Justification for Research: the construction companies are facing barriers and challenges in BIM adoption as there is no clear guidance or best practice studies from which they can learn and build up their capacity for BIM use in order to increase productivity, efficiency, quality, and to attain competitive advantages in the global market and to achieve the targets in environmental sustainability. Purpose: this paper aims to explain a comprehensive and systemic evaluation and assessment of the relevant BIM technologies as part of the BIM adoption and implementation to demonstrate how efficiency gains have been achieved towards a lean architectural practice. Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and the John McCall Architects based in Liverpool, which is an SME (Small Medium Enterprise). The overall aim of KTP is to develop Lean Design Practice through the BIM adoption and implementation. The overall BIM implementation approach uses a socio-technical view in which it does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The technology adoption methodology within the BIM implementation approach is the action research oriented qualitative and quantitative research for discovery, comparison, and experimentation as the KTP project with JMA provides an environment for “learning by doing” Findings: research has proved that BIM technology adoption should be undertaken with a bottom-up approach rather than top-down approach for successful change management and dealing with the resistance to change. As a result of the BIM technology adoption, efficiency gains are achieved through the piloting projects and the design process is improved through the elimination of wastes and value generation. Originality/Value: successful BIM adoption needs an implementation strategy. However, at operational level, it is imperative that professional guidelines are required as part of the implementation strategy. This paper introduces a systematic approach for BIM technology adoption based on a case study implementation and it demonstrates a guideline at operational level for other SME companies of architectural practices

    Suprathermal electrons at Saturn's bow shock

    Get PDF
    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with theory in which the "injection" of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ~1 MeV).Comment: 22 pages, 5 figures. Accepted for publication in Ap

    Subsurface Imaging with Reverse Vertical Seismic Pro les

    Get PDF
    A novel imaging process, referred to as vector image isochron (VII) migration, is specifically designed to reduce artifacts caused by arrays with limited apertures. By examining the assumptions behind generalized Radon transform (GRT) migration, a new approach is found which identities and suppresses array artifacts, based on the array geometry and the migration earth model. The new method works in four steps: 1) The conventional image is broken down according to the orientation of imaged planes within the image space, forming a vector image of the earth; 2) the earth model and the geometry of the arrays are used to derive vector image isochrons, which define the shape of reflection events in the vector image space; 3) the vector image is transformed by summing along the isochrons so that it depends on subsurface location and reflector orientation, rather than imaged plane orientation. This process is referred to as vector image isochron (VII) transformation; and 4) the transformed vector image is collapsed to a scalar image by summing over reflector orientations. The VII imaging method is derived in both 2D and 3D with the assumption that at least one of the arrays, source or receiver, is oriented horizontally. The surface array can have any distribution along the surface. The other array can have any orientation, although in this paper it will be assumed to be either another surface array or a vertically oriented downhole array. Downhole surveys in deviated wells, or in multiple wells, can be imaged with VII migration, at the likely cost of more computation time. The VII imaging method is tested on field data acquired in 1998 by MIT and several industry partners. The dataset is a 3D reverse vertical seismic profile (RVSP) over a hydrocarbon-bearing pinnacle reef in the northern Michigan reef trend. The survey exhibited two features of note: 1) A new, strong, downhole vertical vibrator, and 2) a random distribution of surface receiver locations. Due to adverse conditions, a large portion of the surface spread had to be abandoned. The reduced spatial coverage presents a challenge to the new migration method, but also limits the extent of the migrated image, precluding an evaluation of the reflectiveness of the random receiver spread. The limited nature of the receiver array also causes artifacts in the image which resemble migration "smiles". These are partially suppressed by limiting the dip aperture of the migration, but this also limits the reflector dips that can be imaged. The new VII imaging scheme, on the other hand, removes the artifacts without diminishing dipping reflectors. The VII images show more continuity along reflectors than images made with the conventional method

    SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks

    Full text link
    Going deeper and wider in neural architectures improves the accuracy, while the limited GPU DRAM places an undesired restriction on the network design domain. Deep Learning (DL) practitioners either need change to less desired network architectures, or nontrivially dissect a network across multiGPUs. These distract DL practitioners from concentrating on their original machine learning tasks. We present SuperNeurons: a dynamic GPU memory scheduling runtime to enable the network training far beyond the GPU DRAM capacity. SuperNeurons features 3 memory optimizations, \textit{Liveness Analysis}, \textit{Unified Tensor Pool}, and \textit{Cost-Aware Recomputation}, all together they effectively reduce the network-wide peak memory usage down to the maximal memory usage among layers. We also address the performance issues in those memory saving techniques. Given the limited GPU DRAM, SuperNeurons not only provisions the necessary memory for the training, but also dynamically allocates the memory for convolution workspaces to achieve the high performance. Evaluations against Caffe, Torch, MXNet and TensorFlow have demonstrated that SuperNeurons trains at least 3.2432 deeper network than current ones with the leading performance. Particularly, SuperNeurons can train ResNet2500 that has 10410^4 basic network layers on a 12GB K40c.Comment: PPoPP '2018: 23nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programmin

    Martian sub-surface ionising radiation: biosignatures and geology

    Get PDF
    The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. &lt;br&gt;&lt;br&gt; We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields

    As old as the hills: Pliocene palaeogeographical processes influence patterns of genetic structure in the widespread, common shrub Banksia sessilis

    Get PDF
    The impact of Quaternary glaciation on the development of phylogeographic structure in plant species is well documented. In unglaciated landscapes, phylogeographic patterns tend to reflect processes relating to persistence and stochasticity, yet other factors, associated with the palaeogeographical history of the landscape, including geomorphological events, can also have a significant influence. The unglaciated landscape of south‐western Western Australia is an ideal location to observe these ancient drivers of lineage diversification, with tectonic activity associated with the Darling Fault in the late Pliocene attributed to patterns of deep phylogeographic divergence in a widespread tree from this region. Interestingly, other species within this region have not shown this pattern and this palaeogeographical boundary therefore presents an opportunity to examine age and historical distribution of plant species endemic to this region. In this study, we assess patterns of genetic diversity and structure across 28 populations of the widespread shrub Banksia sessilis using three cpDNA markers and nine nuclear microsatellite markers. Sixteen cpDNA haplotypes were identified, comprising two major chloroplast DNA lineages that are estimated to have diverged in the Pliocene, approximately 3.3 million years ago. This timing coincides with major geomorphological processes in the landscape, including the separation of the Darling Plateau from the adjacent Swan Coastal Plain, as well as eustatic changes on the Swan Coastal Plain that are likely to have resulted in the physical isolation of historical plant lineages. Chloroplast lineages were broadly aligned with populations associated with older lateritic soils of the Darling Plateau and Geraldton sandplains or the younger sandy soils associated with the Swan Coastal Plain and Southern Coastline. This structural pattern of lateritic versus non‐lateritic division was not observed in the nuclear microsatellite data that identified three genetic clades that roughly corresponded to populations in the North, South, and Central portions of the distributions
    corecore