4,555 research outputs found

    Speech earthquakes: scaling and universality in human voice

    Get PDF
    Submitted for publicationSubmitted for publicationSpeech is a distinctive complex feature of human capabilities. In order to understand the physics underlying speech production, in this work we empirically analyse the statistics of large human speech datasets ranging several languages. We first show that during speech the energy is unevenly released and power-law distributed, reporting a universal robust Gutenberg-Richter-like law in speech. We further show that such earthquakes in speech show temporal correlations, as the interevent statistics are again power-law distributed. Since this feature takes place in the intra-phoneme range, we conjecture that the responsible for this complex phenomenon is not cognitive, but it resides on the physiological speech production mechanism. Moreover, we show that these waiting time distributions are scale invariant under a renormalisation group transformation, suggesting that the process of speech generation is indeed operating close to a critical point. These results are put in contrast with current paradigms in speech processing, which point towards low dimensional deterministic chaos as the origin of nonlinear traits in speech fluctuations. As these latter fluctuations are indeed the aspects that humanize synthetic speech, these findings may have an impact in future speech synthesis technologies. Results are robust and independent of the communication language or the number of speakers, pointing towards an universal pattern and yet another hint of complexity in human speech

    Optical spectroscopy of the microquasar GRS 1758-258: a possible intermediate mass system?

    Full text link
    Context. GRS 1758-258 is one of two prototypical microquasars towards the Galactic Center direction discovered almost a quarter of a century ago. The system remains poorly studied in the optical domain due to its counterpart being a very faint and absorbed target in a crowded region of the sky. Aims. Our aim is to investigate GRS 1758-258 in order to shed light on the nature of the stellar binary components. In particular, the main physical parameters of the donor star, such as the mass or the spectral type, are not yet well constrained. Methods. GRS 1758-258 has remained so far elusive to optical spectroscopy owing to its observational difficulties. Here, we use this traditional tool of stellar astronomy at low spectral resolution with a 10 m class telescope and a long slit spectrograph. Results. An improved spectrum is obtained as compared to previous work. The quality of the data does not allow the detection of emission or absorption features but, nevertheless, we manage to partially achieve our aims comparing the de-reddened continuum with the spectral energy distribution expected from an irradiated disc model and different donor star templates. Conclusions. We tentatively propose that GRS 1758-258 does not host a giant star companion. Instead, a main sequence star with mid-A spectral type appears to better agree with our data. The main impacts of this finding are the possibility that we are dealing with an intermediate mass system and, in this case, the prediction of an orbital period significantly shorter than previously proposed.Comment: 5 pages, 6 figures, accepted for publication in A&

    Quasiperiodic graphs: structural design, scaling and entropic properties

    Get PDF
    A novel class of graphs, here named quasiperiodic, are constructed via application of the Horizontal Visibility algorithm to the time series generated along the quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions represented by the Farey tree is inherited by their associated graphs. We are able to establish, via Renormalization Group (RG) theory, the architecture of the quasiperiodic graphs produced by irrational winding numbers with pure periodic continued fraction. And finally, we demonstrate that the RG fixed-point degree distributions are recovered via optimization of a suitably defined graph entropy

    Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights

    Full text link
    There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve functional tumour-associated blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation medi- ated by vascular targeting agents that induce occlusion/collapse of tumour blood vessels. In contrast, the therapeutic intention of normalising the abnormal structure and function of tumour vascular net- works, e.g. via alleviating stress-induced vaso-occlusion, is to improve chemo-, immuno- and radiation therapy efficacy. Although both strategies have shown therapeutic potential, it remains unclear why they often fail to control glioma invasion into the surrounding healthy brain tissue. To shed light on this issue, we propose a mathematical model of glioma invasion focusing on the interplay between the mi- gration/proliferation dichotomy (Go-or-Grow) of glioma cells and modulations of the functional tumour vasculature. Vaso-modulatory interventions are modelled by varying the degree of vaso-occlusion. We discovered the existence of a critical cell proliferation/diffusion ratio that separates glioma invasion re- sponses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the tumour front speed and increase the infiltration width, for those in the other regime the invasion speed increases and infiltration width decreases. We show how these in silico findings can be used to guide individualised approaches of vaso-modulatory treatment strategies and thereby improve success rates

    Gaseous Helium storage and management in the cryogenic system for the LHC

    Get PDF
    The Large Hadron Collider (LHC) is presently under construction at CERN. Its main components are superconducting magnets which will operate in superfluid helium requiring cryogenics on a length of about 24 km around the machine ring with a total helium inventory of about 100 tonnes. As no permanent liquid helium storage is foreseen and for reasons of investment costs, only half of the total helium content can be stored in gaseous form in medium pressure vessels. During the LHC operation part of these vessels will be used as helium buffer in the case of multiple magnet quenches. This paper describes the storage, distribution and management of the helium, the layout and the connection to the surface and underground equipment of the cryogenic system

    The Visibility Graph: a new method for estimating the Hurst exponent of fractional Brownian motion

    Full text link
    Fractional Brownian motion (fBm) has been used as a theoretical framework to study real time series appearing in diverse scientific fields. Because its intrinsic non-stationarity and long range dependence, its characterization via the Hurst parameter H requires sophisticated techniques that often yield ambiguous results. In this work we show that fBm series map into a scale free visibility graph whose degree distribution is a function of H. Concretely, it is shown that the exponent of the power law degree distribution depends linearly on H. This also applies to fractional Gaussian noises (fGn) and generic f^(-b) noises. Taking advantage of these facts, we propose a brand new methodology to quantify long range dependence in these series. Its reliability is confirmed with extensive numerical simulations and analytical developments. Finally, we illustrate this method quantifying the persistent behavior of human gait dynamics.Comment: 5 pages, submitted for publicatio

    Detailed study of SNR G306.3-0.9 using XMM-Newton and Chandra observations

    Get PDF
    We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of SNR G306.3-0.9. A spatially-resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations were also used to constrain the progenitor supernova and study the environment in which the SNR evolved. The X-ray morphology of the remnant displays a non-uniform structure of semi-circular appearance, with a bright southwest region and very weak or almost negligible X-ray emission in its northern part. These results indicate that the remnant is propagating in a non-uniform environment as the shock fronts are encountering a high-density medium, where enhanced infrared emission is detected. The X-ray spectral analysis of the selected regions shows distinct emission-line features of several metal elements, confirming the thermal origin of the emission. The X-ray spectra are well represented by a combination of two absorbed thermal plasma models: one in equilibrium ionization with a mean temperature of ~0.19 keV, and another out of equilibrium ionization at a higher temperature of ~1.1 or 1.6-1.9 keV. For regions located in the northeast, central, and southwest part of the SNR, we found elevated abundances of Si, S, Ar, Ca, and Fe, typical of ejecta material. The outer regions located northwest and south show values of the abundances above solar but lower than to those found in the central regions. This suggests that the composition of the emitting outer parts of the SNR is a combination of ejecta and shocked material of the interstellar medium. The comparison between the S/Si, Ar/Si, and Ca/Si abundances ratios (1.75, 1.27, and 2.72 in the central region, respectively), favor a Type Ia progenitor for this SNR, a result that is also supported by an independent morphological analysis using X-ray and IR data.Comment: 8 pages, 7 figures. Accepted by Astronomy and Astrophysic

    Genetic and morphological evidence reveals the existence of a new family, genus and species of Echinorhynchida (Acanthocephala)

    Get PDF
    Gymnorhadinorhynchus gen. n. is proposed to accommodate its type species, G. decapteri sp. n., a parasite of the marine fish Decapterus punctatus (Cuvier), caught from the coastal waters of Brazil. Gymnorhadinorhynchus decapteri sp. n. was morphologically most similar to species of two echinorhynchid families, the Rhadinorhynchidae and the Cavisomidae, particularly in the structure of the proboscis and the absence of somatic spines, respectively. This combination of morphological features made it difficult to assign our specimen to an extant family of the Acanthocephala. Therefore, in order to clarify the systematic placement of G. decapteri, a molecular phylogenetic analysis was performed based on the SSU and LSU rDNA and the mitochondrial cox1 gene sequences obtained for the new taxon and other 26 acanthocephalan species. The results of parsimony and maximum likelihood analyses, using individual, combined and concatenated sequence data, consistently indicate that the specimens do not belong to any known family of the Echinorhynchida. Rather, G. decapteri represents a distinct lineage that is closely related to the Transvenidae, but distantly related to both the Rhadinorhynchidae and the Cavisomidae. Gymnorhadinorhynchidae fam. n. is therefore erected. This newly described family can be distinguished from other families of Echinorhynchida by the combination of the following morphological characters: a proboscis cylindrical with 10 rows of 22?26 hooks, dorsoventral differences in proboscis hooks, basal hooks forming a ring and being abruptly larger than anterior hooks, absence of trunk spines and presence of four tubular cement glands. This combination, in addition to several molecular autapomorphies, justifies the erection of a new genus, Gymnorhadinorhynchus gen. n., in order to accommodate this new species.Fil: Braicovich, Paola Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Lanfranchi, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Farber, Marisa Diana. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marvaldi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Luque, José L.. Universidade Federal Rural Do Rio de Janeiro; BrasilFil: Timi, Juan Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Real-time evolution of a large-scale relativistic jet

    Get PDF
    Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims. We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a 'short', few parsec length with relativistic velocities. Methods. The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results. Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.Comment: 5 pages, 3 figures, 2 tables. Accepted for publication in Astronomy and Astrophysics Letter

    H-alpha observations of the gamma-ray-emitting Be/X-ray binary LSI+61303: orbital modulation, disk truncation, and long-term variability

    Full text link
    We report 138 spectral observations of the H-alpha emission line of the radio- and gamma-ray-emitting Be/X-ray binary LSI+61303 obtained during the period of September 1998 -- January 2013. From measuring various H-alpha parameters, we found that the orbital modulation of the H-alpha is best visible in the equivalent width ratio EW(B)/EW(R), the equivalent width of the blue hump, and in the radial velocity of the central dip. The periodogram analysis confirmed that the H-alpha emission is modulated with the orbital and superorbital periods. For the past 20 years the radius of the circumstellar disk is similar to the Roche lobe size at the periastron. It is probably truncated by a 6:1 resonance. The orbital maximum of the equivalent width of H-alpha emission peaks after the periastron and coincides on average with the X-ray and gamma-ray maxima. All the spectra are available upon request from the authors and through the CDS.Comment: 11 pages, accepted for publication in A&
    • 

    corecore