2,433 research outputs found

    Probing Near-Horizon Fluctuations with Black Hole Binary Mergers

    Full text link
    The strong version of the nonviolent nonlocality proposal of Giddings predicts "strong but soft" quantum metric fluctuations near black hole horizons in an attempt to resolve the information paradox. To study observable signatures of this proposal, we numerically solve Einstein's equations modified by these fluctuations and analyze the gravitational wave signal from the inspiral and merger of two black holes. In a model of evolution for such fluctuations, we show that they lead to significant deviations in the observed waveform, even when the black holes are still well separated, and could potentially be observed by aLIGO.Comment: 7 pages, 6 figures; v2: published versio

    Unquenched Numerical Stochastic Perturbation Theory

    Get PDF
    The inclusion of fermionic loops contribution in Numerical Stochastic Perturbation Theory (NSPT) has a nice feature: it does not cost so much (provided only that an FFT can be implemented in a fairly efficient way). Focusing on Lattice SU(3), we report on the performance of the current implementation of the algorithm and the status of first computations undertaken.Comment: 3 pages, 3 figures, Lattice2002(algor

    Illinois Highway Materials Sustainability Efforts of 2014

    Get PDF
    This report presents the 2014 sustainability efforts of the Illinois Department of Transportation (IDOT) in recycling reclaimed materials in highway construction. This report meets the requirements of Illinois Public Act 097-0314 by documenting IDOT’s efforts to reduce the carbon footprint and achieve cost savings through the use of recycled materials in asphalt paving projects. Research efforts undertaken and those that will have a future impact on IDOT’s sustainability efforts are highlighted.Illinois Department of Transportation, R27-160Ope

    Finite Size Analysis of the U(1) Background Field Effective Action

    Full text link
    We apply the finite size scaling analysis to the derivative of the density of the effective action for the lattice U(1) pure gauge theory in an external constant magnetic field. We found the presence of a continuous phase transition. Moreover, our extimate of of the critical parameters gives values consistent with those extracted from the analysis of the specific heat.Comment: LaTeX2e, 12 pages (5 figures

    Scanning the Topological Sectors of the QCD Vacuum with Hybrid Monte Carlo

    Get PDF
    We address a long standing issue and determine the decorrelation efficiency of the Hybrid Monte Carlo algorithm (HMC), for full QCD with Wilson fermions, with respect to vacuum topology. On the basis of five state-of-the art QCD vacuum field ensembles (with 3000 to 5000 trajectories each and m_pi/m_rho-ratios in the regime >0.56, for two sea quark flavours) we are able to establish, for the first time, that HMC provides sufficient tunneling between the different topological sectors of QCD. This will have an important bearing on the prospect to determine, by lattice techniques, the topological susceptibility of the vacuum, and topology sensitive quantities like the spin content of the proton, or the eta' mass.Comment: 5 pages, 4 eps-figure

    The ratio FK/Fpi in QCD

    Get PDF
    We determine the ratio FK/Fpi in QCD with Nf=2+1 flavors of sea quarks, based on a series of lattice calculations with three different lattice spacings, large volumes and a simulated pion mass reaching down to about 190 MeV. We obtain FK/Fpi=1.192 +/- 0.007(stat) +/- 0.006(syst). This result is then used to give an updated value of the CKM matrix element |Vus|. The unitarity relation for the first row of this matrix is found to be well observed.Comment: 15 pages, 4 figures, 2 table

    Chiral behavior of pseudo-Goldstone boson masses and decay constants in 2+1 flavor QCD

    Get PDF
    We present preliminary results for the chiral behavior of charged pseudo-Goldstone-boson masses and decay constants. These are obtained in simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea quarks. In these simulations, mesons are composed of either valence quarks discretized in the same way as the sea quarks (unitary simulations) or of overlap valence quarks (mixed-action simulations). We find that the chiral behavior of the pseudoscalar meson masses in the mixed-action calculations cannot be explained with continuum, partially-quenched chiral perturbation theory. We show that the inclusion of O(a^2) unitarity violations in the chiral expansion resolves this discrepancy and that the size of the unitarity violations required are consistent with those which we observe in the zero-momentum, scalar-isotriplet-meson propagator.Comment: 7 pages, 3 figures, talk by L. Lellouch at the XXV International Symposium on Lattice Field Theory (LATTICE 2007), 30 July - 4 August 2007, Regensburg, German
    • …
    corecore