43,608 research outputs found
Thermal reactor
A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket
Inverse spectral results for Schr\"odinger operators on the unit interval with potentials in L^P spaces
We consider the Schr\"odinger operator on with potential in . We
prove that two potentials already known on () and having
their difference in are equal if the number of their common eigenvalues
is sufficiently large. The result here is to write down explicitly this number
in terms of (and ) showing the role of
Nucleation of Spontaneous Vortices in Trapped Fermi Gases Undergoing a BCS-BEC Crossover
We study the spontaneous formation of vortices during the superfluid
condensation in a trapped fermionic gas subjected to a rapid thermal quench via
evaporative cooling. Our work is based on the numerical solution of the time
dependent crossover Ginzburg-Landau equation coupled to the heat diffusion
equation. We quantify the evolution of condensate density and vortex length as
a function of a crossover phase parameter from BCS to BEC. The more interesting
phenomena occur somewhat nearer to the BEC regime and should be experimentally
observable; during the propagation of the cold front, the increase in
condensate density leads to the formation of supercurrents towards the center
of the condensate as well as possible condensate volume oscillations.Comment: 5 pages, 3 figure
Rotational effects in thermonuclear Type I Bursts: equatorial crossing and directionality of flame spreading
In a previous study on thermonuclear (type I) nursts on accreting neutron
stars we addressed and demonstrated the importance of the effects of rotation,
through the Coriolis force, on the propagation of the burning flame. However,
that study only analysed cases of longitudinal propagation, where the Coriolis
force coefficient was constant. In this paper, we study the
effects of rotation on propagation in the meridional (latitudinal) direction,
where the Coriolis force changes from its maximum at the poles to zero at the
equator. We find that the zero Coriolis force at the equator, while affecting
the structure of the flame, does not prevent its propagation from one
hemisphere to another. We also observe structural differences between the flame
propagating towards the equator and that propagating towards the pole, the
second being faster. In the light of the recent discovery of the low spin
frequency of burster IGR~J17480-2446 rotating at 11 Hz (for which Coriolis
effects should be negligible) we also extend our simulations to slow rotation.Comment: Accepted for publication by MNRA
Community College Culture and Faculty of Color
This investigation examines and explains the ways in which community college faculty of color construct their understandings of institutional culture. We investigate four community colleges in California through interviews with 31 full-time faculty of color. This faculty group expresses identity conflicts between their professional roles and their cultural identities. Their understandings of their institutions suggest that the culture of the community college is more complex and multi-faceted than that portrayed in the scholarly literature, which often portrays the institution as homogeneous and the faculty body as uniform. © The Author(s) 2013
“Dangerous Work”: Improving Conditions for Faculty of Color in the Community College
This qualitative investigation of the experiences of faculty of color at community colleges identifies current conditions for this population and suggests potentials for ameliorating conditions that inhibit their job satisfaction. We argue that the current conditions for faculty of color, based upon their expressed experiences at the community colleges, are deleterious to their professional performance, to their positive self-image, and to their contributions to their institutions. Alterations to these current conditions are unlikely without systemic institutional change. Indeed, without improvement to these conditions, the job satisfaction of faculty of color is not likely to change
The Divided Self: The Double Consciousness of Faculty of Color in Community Colleges
Through qualitative field methods research addressing faculty of color in four California community colleges, this investigation examines and explains faculty experiences and professional sense making. By combining critical race theory with social identity theory, our perspective underlines the potential social and ethnic identity conflicts inherent in the daily lives of faculty of color. The professional and social identities of faculty of color are not necessarily compatible, leading to a condition of "double consciousness," or what we refer to as "the divided self." © The Author(s) 2013
Gluon density in nuclei
In this talk we present our detail study ( theory and numbers) [1] on the
shadowing corrections to the gluon structure functions for nuclei. Starting
from rather contraversial information on the nucleon structure function which
is originated by the recent HERA data, we develop the Glauber approach for the
gluon density in a nucleus based on Mueller formula [2] and estimate the value
of the shadowing corrections in this case. Than we calculate the first
corrections to the Glauber approach and show that these corrections are big.
Based on this practical observation we suggest the new evolution equation which
takes into account the shadowing corrections and solve it. We hope to convince
you that the new evolution equation gives a good theoretical tool to treat the
shadowing corrections for the gluons density in a nucleus and, therefore, it is
able to provide the theoretically reliable initial conditions for the time
evolution of the nucleus - nucleus cascade.Comment: Talk at RHIC'96, 43 pages, 23 figure
- …
