1,838 research outputs found

    The observed chemical structure of L1544

    Full text link
    Prior to star formation, pre-stellar cores accumulate matter towards the centre. As a consequence, their central density increases while the temperature decreases. Understanding the evolution of the chemistry and physics in this early phase is crucial to study the processes governing the formation of a star. We aim at studying the chemical differentiation of a prototypical pre-stellar core, L1544, by detailed molecular maps. In contrast with single pointing observations, we performed a deep study on the dependencies of chemistry on physical and external conditions. We present the emission maps of 39 different molecular transitions belonging to 22 different molecules in the central 6.25 arcmin2^2 of L1544. We classified our sample in five families, depending on the location of their emission peaks within the core. Furthermore, to systematically study the correlations among different molecules, we have performed the principal component analysis (PCA) on the integrated emission maps. The PCA allows us to reduce the amount of variables in our dataset. Finally, we compare the maps of the first three principal components with the H2_2 column density map, and the Tdust_{dust} map of the core. The results of our qualitative analysis is the classification of the molecules in our dataset in the following groups: (i) the cc-C3_3H2_2 family (carbon chain molecules), (ii) the dust peak family (nitrogen-bearing species), (iii) the methanol peak family (oxygen-bearing molecules), (iv) the HNCO peak family (HNCO, propyne and its deuterated isotopologues). Only HC18^{18}O+^+ and 13^{13}CS do not belong to any of the above mentioned groups. The principal component maps allow us to confirm the (anti-)correlations among different families that were described in a first qualitative analysis, but also points out the correlation that could not be inferred before.Comment: 29 pages, 19 figures, 2 appendices, accepted for publication in A&A, arXiv abstract has been slightly modifie

    Evidence for orbital motion of CW Leonis from ground-based astrometry

    Get PDF
    © 2017 The Authors.Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations indicate that CW Leo, the closest carbon-rich asymptotic giant branch star to Sun, might have a low-mass stellar companion. We present archival ground-based astrometric measurements of CW Leo obtained within the context of the Torino Parallax Program and with > 6 yr (1995-2001) of time baseline. The residuals to a single-star solution show significant curvature, and they are strongly correlatedwith thewell-known I-band photometric variations due to stellar pulsations. We describe successfully the astrometry of CW Leo with a variability-induced motion (VIM) + acceleration model. We obtain proper motion and parallax of the centre-of-mass of the binary, the former in fair agreement with recent estimates, the latter at the near end of the range of inferred distances based on indirect methods. The VIM + acceleration model results allow us to derive a companion mass in agreement with that inferred by ALMA, they point towards a somewhat longer period than implied by ALMA, but are not compatible with much longer period estimates. These data will constitute a fundamental contribution towards the full understanding of the orbital architecture of the system when combined with Gaia astrometry, providing an ~25 yr time baseline.Peer reviewe

    A novel CMB polarization likelihood package for large angular scales built from combined WMAP and Planck LFI legacy maps

    Get PDF
    We present a CMB large-scale polarization dataset obtained by combining WMAP Ka, Q and V with Planck 70 GHz maps. We employ the legacy frequency maps released by the WMAP and Planck collaborations and perform our own Galactic foreground mitigation technique, which relies on Planck 353 GHz for polarized dust and on Planck 30 GHz and WMAP K for polarized synchrotron. We derive a single, optimally-noise-weighted, low-residual-foreground map and the accompanying noise covariance matrix. These are shown, through χ2\chi^2 analysis, to be robust over an ample collection of Galactic masks. We use this dataset, along with the Planck legacy Commander temperature solution, to build a pixel-based low-resolution CMB likelihood package, whose robustness we test extensively with the aid of simulations, finding excellent consistency. Using this likelihood package alone, we constrain the optical depth to reionazation τ=0.0690.012+0.011\tau=0.069^{+0.011}_{-0.012} at 68%68\% C.L., on 54\% of the sky. Adding the Planck high-\ell temperature and polarization legacy likelihood, the Planck lensing likelihood and BAO observations we find τ=0.07140.0096+0.0087\tau=0.0714_{-0.0096}^{+0.0087} in a full Λ\LambdaCDM exploration. The latter bounds are slightly less constraining than those obtained employing \Planck\ HFI CMB data for large angle polarization, that only include EE correlations. Our bounds are based on a largely independent dataset that does include also TE correlations. They are generally well compatible with Planck HFI preferring slightly higher values of τ\tau. We make the low-resolution Planck and WMAP joint dataset publicly available along with the accompanying likelihood code.Comment: The WMAP+LFI likelihood module is available on \http://www.fe.infn.it/u/pagano/low_ell_datasets/wmap_lfi_legacy

    The radial metallicity gradients in the Milky Way thick disk as fossil signatures of a primordial chemical distribution

    Get PDF
    In this letter we examine the evolution of the radial metallicity gradient induced by secular processes, in the disk of an NN-body Milky Way-like galaxy. We assign a [Fe/H] value to each particle of the simulation according to an initial, cosmologically motivated, radial chemical distribution and let the disk dynamically evolve for 6 Gyr. This direct approach allows us to take into account only the effects of dynamical evolution and to gauge how and to what extent they affect the initial chemical conditions. The initial [Fe/H] distribution increases with R in the inner disk up to R ~ 10 kpc and decreases for larger R. We find that the initial chemical profile does not undergo major transformations after 6 Gyr of dynamical evolution. The final radial chemical gradients predicted by the model in the solar neighborhood are positive and of the same order of those recently observed in the Milky Way thick disk. We conclude that: 1) the spatial chemical imprint at the time of disk formation is not washed out by secular dynamical processes, and 2) the observed radial gradient may be the dynamical relic of a thick disk originated from a stellar population showing a positive chemical radial gradient in the inner regions.Comment: 10 pages, 5 figures, Accepted for publication on Astrophysical Journal Letter

    Rotational spectroscopy of the HCCO and DCCO radicals in the millimeter and submillimeter range

    Full text link
    The ketenyl radical, HCCO, has recently been detected in the ISM for the first time. Further astronomical detections of HCCO will help us understand its gas-grain chemistry, and subsequently revise the oxygen-bearing chemistry towards dark clouds. Moreover, its deuterated counterpart, DCCO, has never been observed in the ISM. HCCO and DCCO still lack a broad spectroscopic investigation, although they exhibit a significant astrophysical relevance. In this work we aim to measure the pure rotational spectra of the ground state of HCCO and DCCO in the millimeter and submillimeter region, considerably extending the frequency range covered by previous studies. The spectral acquisition was performed using a frequency-modulation absorption spectrometer between 170 and 650 GHz. The radicals were produced in a low-density plasma generated from a select mixture of gaseous precursors. For each isotopologue we were able to detect and assign more than 100 rotational lines. The new lines have significantly enhanced the previous data set allowing the determination of highly precise rotational and centrifugal distortion parameters. In our analysis we have taken into account the interaction between the ground electronic state and a low-lying excited state (Renner-Teller pair) which enables the prediction and assignment of rotational transitions with KaK_a up to 4. The present set of spectroscopic parameters provides highly accurate, millimeter and submillimeter rest-frequencies of HCCO and DCCO for future astronomical observations. We also show that towards the pre-stellar core L1544, ketenyl peaks in the region where cc-C3H2\mathrm{C_3H_2} peaks, suggesting that HCCO follows a predominant hydrocarbon chemistry, as already proposed by recent gas-grain chemical models

    Family businesses in Eastern European countries: How informal payments affect exports

    Get PDF
    This article investigates the effect of corruption on the export share of family firms in Eastern European countries. Using the Business Environment and Enterprise Performance Survey and panel data methods, we find that, in contrast to non-family firms, family firms are rather sensitive to corruption. In particular, the export share of family firms is positively associated with informal payments that aim to facilitate business operations. There are at least three compelling explanations for these results. First, if family firms are more risk averse than non-family firms, informal payments may represent additional export risk insurance. Second, informal payments may help family firms compensate for the lack of managerial capabilities to export. Finally, when institutional inefficiencies obstruct business, corruption may be a tool for family firms to protect their socioemotional wealth

    The GSC-II-based survey of ancient cool white dwarfs I. The sample of spectroscopically confirmed WDs

    Full text link
    The GSC-II white dwarf survey was designed to identify faint and high proper motion objects, which we used to define a new and independent sample of cool white dwarfs. With this survey we aim to derive new constraints on the halo white dwarf space density. Also, these data can provide information on the age of thick disk and halo through the analysis of the luminosity function. On the basis of astrometric and photometric parameters, we selected candidates with mu > 0.28 as/yr and R_F > 16 in an area of 1150 square degrees. Then, we separated white dwarfs from late type dwarfs and subdwarfs by means of the reduced proper motion diagram. Finally, spectroscopic follow-up observations were carried out to confirm the white dwarf nature of the selected candidates. We found 41 white dwarfs of which 24 are new discoveries. Here we present the full sample and for each object provide positions, absolute proper motions, photometry, and spectroscopy.Comment: 14 pages, 7 figures, submitted to A&

    Conformations of confined biopolymers

    Get PDF
    Nanoscale and microscale confinement of biopolymers naturally occurs in cells and has been recently achieved in artificial structures designed for nanotechnological applications. Here, we present an extensive theoretical investigation of the conformations and shape of a biopolymer with varying stiffness confined to a narrow channel. Combining scaling arguments, analytical calculations, and Monte Carlo simulations, we identify various scaling regimes where master curves quantify the functional dependence of the polymer conformations on the chain stiffness and strength of confinement.Comment: 5 pages, 4 figures, minor correction
    corecore