6,242 research outputs found

    Constraints on the Growth and Spin of the Supermassive Black Hole in M32 From High Cadence Visible Light Observations

    Get PDF
    We present 1-second cadence observations of M32 (NGC221) with the CHIMERA instrument at the Hale 200-inch telescope of the Palomar Observatory. Using field stars as a baseline for relative photometry, we are able to construct a light curve of the nucleus in the g-prime and r-prime band with 1sigma=36 milli-mag photometric stability. We derive a temporal power spectrum for the nucleus and find no evidence for a time-variable signal above the noise as would be expected if the nuclear black hole were accreting gas. Thus, we are unable to constrain the spin of the black hole although future work will use this powerful instrument to target more actively accreting black holes. Given the black hole mass of (2.5+/-0.5)*10^6 Msun inferred from stellar kinematics, the absence of a contribution from a nuclear time-variable signal places an upper limit on the accretion rate which is 4.6*10^{-8} of the Eddington rate, a factor of two more stringent than past upper limits from HST. The low mass of the black hole despite the high stellar density suggests that the gas liberated by stellar interactions was primarily at early cosmic times when the low-mass black hole had a small Eddington luminosity. This is at least partly driven by a top-heavy stellar initial mass function at early cosmic times which is an efficient producer of stellar mass black holes. The implication is that supermassive black holes likely arise from seeds formed through the coalescence of 3-100 Msun mass black holes that then accrete gas produced through stellar interaction processes.Comment: 8 pages, 3 figures, submitted to the Astrophysical Journal, comments welcom

    Coexistence of localized and itinerant electrons in BaFe2X3 (X = S and Se) revealed by photoemission spectroscopy

    Full text link
    We report a photoemission study at room temperature on BaFe2X3 (X = S and Se) and CsFe2Se3 in which two-leg ladders are formed by the Fe sites. The Fe 2p core-level peaks of BaFe2X3 are broad and exhibit two components, indicating that itinerant and localized Fe 3d sites coexist similar to KxFe2-ySe2. The Fe 2p core-level peak of CsFe2Se3 is rather sharp and is accompanied by a charge-transfer satellite. The insulating ground state of CsFe2Se3 can be viewed as a Fe2+ Mott insulator in spite of the formal valence of +2.5. The itinerant versus localized behaviors can be associated with the stability of chalcogen p holes in the two-leg ladder structure.Comment: 5 pages, 5 figures, Accepted in publication for Physical Review

    Coexistence of Bloch electrons and glassy electrons in Ca10(Ir4As8)(Fe2_xIrxAs2)5 revealed by angle-resolved photoemission spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy of Ca10(Ir4As8)(Fe2_xIrxAs2)5 shows that the Fe 3d electrons in the FeAs layer form the hole-like Fermi pocket at the zone center and the electron-like Fermi pockets at the zone corners as commonly seen in various Fe-based superconductors. The FeAs layer is heavily electron doped and has relatively good two dimensionality. On the other hand, the Ir 5d electrons are metallic and glassy probably due to atomic disorder related to the Ir 5d orbital instability. Ca10(Ir4As8)(Fe2_xIrxAs2)5 exhibits a unique electronic state where the Bloch electrons in the FeAs layer coexist with the glassy electrons in the Ir4As8 layer.Comment: 4 pages, 3 figure

    Determination of the local structure of Sr2x_{2-x}Mx_xIrO4_4 (M = K, La) as a function of doping and temperature

    Full text link
    The local structure of correlated spin-orbit insulator Sr2x_{2-x}Mx_xIrO4_4 (M = K, La) has been investigated by Ir L3_3-edge extended x-ray absorption fine structure measurements. The measurements were performed as a function of temperature for different dopings induced by substitution of Sr with La or K. It is found that Ir-O bonds have strong covalency and they hardly show any change across the N\'eel temperature. In the studied doping range, neither Ir-O bonds nor their dynamics, measured by their mean square relative displacements, show any appreciable change upon carrier doping, indicating possibility of a nanoscale phase separation in the doped system. On the other hand, there is a large increase of the static disorder in Ir-Sr correlation, larger for K doping than La doping. Similarities and differences with respect to the local lattice displacements in cuprates are briefly discussed.Comment: Main text: 6 pages, 4 figures, Supplemental information: 2 pages, 2 figure

    Soft x-rays absorption and high-resolution powder x-ray diffraction study of superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy system

    Full text link
    We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy (0<x<0.4, 6.4<y<7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.Comment: 14 pages, 11 figures, accepted for publication in Journal of Physics and Chemistry of Solid

    Power Factor Correction Using Bridgeless Boost Topology

    Full text link
    Power quality is becoming a major concern for many electrical users. The high power non linear loads (such as adjustable speed drives, arc furnace, static power converter etc) and low power loads (such as computer, fax machine etc) produce voltage fluctuations, harmonic currents and an inequality in network system which results into low power factor operation of the power system. The devices commonly used in industrial, commercial and residential applications need to go through rectification for their proper functioning and operation. Due to the increasing demand of these devices, the line current harmonics create a major problem by degrading the power factor of the system thus affecting the performance of the devices. Hence there is a need to reduce the input line current harmonics so as to improve the power factor of the system. This has led to designing of Power Factor Correction circuits. Power Factor Correction (PFC) involves two techniques, Active PFC and Passive PFC. An active power factor circuit using Boost Converter is used for improving the power factor. This thesis work analyzes the procedural approach and benefits of applying Bridgeless Boost Topology for improving the power factor over Boost Converter Topology. A traditional design methodology Boost Converter Topology is initially analyzed and compared with the Bridgeless Boost topology and the overall Power Factor (PF) can be improved to the expectation. Method of re-shaping the input current waveform to be similar pattern as the sinusoidal input voltage is done by the Boost converter and the related controls that act as a Power Factor Correction (PFC) circuit. Higher efficiency can be achieved by using the Bridgeless Boost Topology. In this paper simulation of Boost Converter topology and Bridgeless PFC boost Converter is presented. Performance comparisons between the conventional PFC boost Converter and the Bridgeless PFC Boost Converter is done

    Core Level Photoemission Study of some Superconducting Characteristics in the 1-2-3 System

    Get PDF

    Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor Ir1x_{1-x}Ptx_xTe2_2

    Full text link
    We have studied electronic structure of triangular lattice Ir1x_{1-x}Ptx_xTe2_2 superconductor using photoemission spectroscopy and model calculations. Ir 4f4f core-level photoemission spectra show that Ir 5d5d t2gt_{2g} charge modulation established in the low temperature phase of IrTe2_2 is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe2_2 suggest that the Ir 5d5d charge modulation is accompanied by Ir 5d5d orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir1x_{1-x}Ptx_xTe2_2.Comment: 5 pages,4 figure

    Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1.6La0.4Cu2O6 superconductors

    Get PDF
    We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.Comment: submited to PR

    HI Fluctuations at Large Redshifts: II - the Signal Expected for GMRT

    Full text link
    For the GMRT, we calculate the expected signal from redshifted HI emission at two frequency bands centered at 610 and 325 MHz. The study focuses on the visibility-visibility cross-correlations, proposed earlier as the optimal statistical estimator for detecting and analyzing this signal. These correlations directly probe the power spectrum of density fluctuations at the redshift where the radiation originated, and thereby provide a method for studying the large scale structures at large redshifts. We present detailed estimates of the correlations expected between the visibilities measured at different baselines and frequencies. Analytic fitting formulas representing the salient features of the expected signal are also provided. These will be useful in planning observations and deciding an optimal strategy for detecting this signal.Comment: 16 pages including 7 figures, published in JAp
    corecore