321 research outputs found

    An Integrated Systems Approach to Deconstructing Glycosylation

    Get PDF
    Glycosylation involves the post-translational addition of carbohydrates to protein molecules and is an intricate and indispensable biochemical process. Study of this complicated network of interactions is hindered by the lack of a coding template analogous to the genetic code, and by the vast structural complexity inherent to carbohydrate polymers. We use lectins (non-enzymatic carbohydrate-binding proteins of non-immunological origin) as microarray probes to identify carbohydrate features expressed on cellular surfaces. Specifically, we utilized lectin microarray technology to investigate the differences in carbohydrates expressed by the cell lines of the Nation Cancer Institute’s NCI-60 panel. Our investigation identified tissue-specific expression differences in high-mannose N-linked glycans as a result of microRNA-based regulation of key processing enzymes in the N-linked biosynthetic pathway. Thus post-transcriptional regulation at the RNA level affects glycome characteristics

    Reverse engineering synthetic antiviral amyloids

    Get PDF
    Human amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein. For influenza we demonstrate that a designer amyloid against PB2 accumulates in influenza A-infected tissue in vivo. Moreover, this amyloid acts specifically against influenza A and its common PB2 polymorphisms, but not influenza B, which lacks the homologous fragment. Our model amyloid demonstrates that the sequence specificity of amyloid interactions has the capacity to tune amyloid-virus interactions while allowing for the flexibility to maintain activity on evolutionary diverging variants. Some human amyloid proteins have been shown to interact with viral proteins, suggesting that they may have potential as therapeutic agents. Here the authors design synthetic amyloids specific for influenza A and Zika virus proteins, respectively, and show that they can inhibit viral replication

    A Simple, Versatile and Sensitive Cell-Based Assay for Prions from Various Species

    Get PDF
    Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies

    Quantitative Detection and Biological Propagation of Scrapie Seeding Activity In Vitro Facilitate Use of Prions as Model Pathogens for Disinfection

    Get PDF
    Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≤101- to ≥105.5-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie infectivity in animals that substantially facilitates the use of prions as potentially highly indicative test agents in the search for novel broad-range disinfectants

    Chemical Approaches To Perturb, Profile, and Perceive Glycans

    Get PDF
    Glycosylation is an essential form of post-translational modification that regulates intracellular and extracellular processes. Regrettably, conventional biochemical and genetic methods often fall short for the study of glycans, because their structures are often not precisely defined at the genetic level. To address this deficiency, chemists have developed technologies to perturb glycan biosynthesis, profile their presentation at the systems level, and perceive their spatial distribution. These tools have identified potential disease biomarkers and ways to monitor dynamic changes to the glycome in living organisms. Still, glycosylation remains the underexplored frontier of many biological systems. In this Account, we focus on research in our laboratory that seeks to transform the study of glycan function from a challenge to routine practice

    Economic Returns to Investment in AIDS Treatment in Low and Middle Income Countries

    Get PDF
    Since the early 2000s, aid organizations and developing country governments have invested heavily in AIDS treatment. By 2010, more than five million people began receiving antiretroviral therapy (ART) – yet each year, 2.7 million people are becoming newly infected and another two million are dying without ever having received treatment. As the need for treatment grows without commensurate increase in the amount of available resources, it is critical to assess the health and economic gains being realized from increasingly large investments in ART. This study estimates total program costs and compares them with selected economic benefits of ART, for the current cohort of patients whose treatment is cofinanced by the Global Fund to Fight AIDS, Tuberculosis and Malaria. At end 2011, 3.5 million patients in low and middle income countries will be receiving ART through treatment programs cofinanced by the Global Fund. Using 2009 ART prices and program costs, we estimate that the discounted resource needs required for maintaining this cohort are 14.2billionfortheperiod20112020.Thisinvestmentisexpectedtosave18.5millionlifeyearsandreturn14.2 billion for the period 2011–2020. This investment is expected to save 18.5 million life-years and return 12 to $34 billion through increased labor productivity, averted orphan care, and deferred medical treatment for opportunistic infections and end-of-life care. Under alternative assumptions regarding the labor productivity effects of HIV infection, AIDS disease, and ART, the monetary benefits range from 81 percent to 287 percent of program costs over the same period. These results suggest that, in addition to the large health gains generated, the economic benefits of treatment will substantially offset, and likely exceed, program costs within 10 years of investment

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles

    Does true Gleason pattern 3 merit its cancer descriptor?

    Get PDF
    Nearly five decades following its conception, the Gleason grading system remains a cornerstone in the prognostication and management of patients with prostate cancer. In the past few years, a debate has been growing whether Gleason score 3 + 3 = 6 prostate cancer is a clinically significant disease. Clinical, molecular and genetic research is addressing the question whether well characterized Gleason score 3 + 3 = 6 disease has the ability to affect the morbidity and quality of life of an individual in whom it is diagnosed. The consequences of treatment of Gleason score 3 + 3 = 6 disease are considerable; few men get through their treatments without sustaining some harm. Further modification of the classification of prostate cancer and dropping the label cancer for Gleason score 3 + 3 = 6 disease might be warranted
    corecore