5,329 research outputs found

    Coexistence of Bloch electrons and glassy electrons in Ca10(Ir4As8)(Fe2_xIrxAs2)5 revealed by angle-resolved photoemission spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy of Ca10(Ir4As8)(Fe2_xIrxAs2)5 shows that the Fe 3d electrons in the FeAs layer form the hole-like Fermi pocket at the zone center and the electron-like Fermi pockets at the zone corners as commonly seen in various Fe-based superconductors. The FeAs layer is heavily electron doped and has relatively good two dimensionality. On the other hand, the Ir 5d electrons are metallic and glassy probably due to atomic disorder related to the Ir 5d orbital instability. Ca10(Ir4As8)(Fe2_xIrxAs2)5 exhibits a unique electronic state where the Bloch electrons in the FeAs layer coexist with the glassy electrons in the Ir4As8 layer.Comment: 4 pages, 3 figure

    Soft x-rays absorption and high-resolution powder x-ray diffraction study of superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy system

    Full text link
    We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy (0<x<0.4, 6.4<y<7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.Comment: 14 pages, 11 figures, accepted for publication in Journal of Physics and Chemistry of Solid

    Power Factor Correction Using Bridgeless Boost Topology

    Full text link
    Power quality is becoming a major concern for many electrical users. The high power non linear loads (such as adjustable speed drives, arc furnace, static power converter etc) and low power loads (such as computer, fax machine etc) produce voltage fluctuations, harmonic currents and an inequality in network system which results into low power factor operation of the power system. The devices commonly used in industrial, commercial and residential applications need to go through rectification for their proper functioning and operation. Due to the increasing demand of these devices, the line current harmonics create a major problem by degrading the power factor of the system thus affecting the performance of the devices. Hence there is a need to reduce the input line current harmonics so as to improve the power factor of the system. This has led to designing of Power Factor Correction circuits. Power Factor Correction (PFC) involves two techniques, Active PFC and Passive PFC. An active power factor circuit using Boost Converter is used for improving the power factor. This thesis work analyzes the procedural approach and benefits of applying Bridgeless Boost Topology for improving the power factor over Boost Converter Topology. A traditional design methodology Boost Converter Topology is initially analyzed and compared with the Bridgeless Boost topology and the overall Power Factor (PF) can be improved to the expectation. Method of re-shaping the input current waveform to be similar pattern as the sinusoidal input voltage is done by the Boost converter and the related controls that act as a Power Factor Correction (PFC) circuit. Higher efficiency can be achieved by using the Bridgeless Boost Topology. In this paper simulation of Boost Converter topology and Bridgeless PFC boost Converter is presented. Performance comparisons between the conventional PFC boost Converter and the Bridgeless PFC Boost Converter is done

    Core Level Photoemission Study of some Superconducting Characteristics in the 1-2-3 System

    Get PDF

    Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1.6La0.4Cu2O6 superconductors

    Get PDF
    We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.Comment: submited to PR

    Experimental evidence of chemical-pressure-controlled superconductivity in cuprates

    Full text link
    X-ray absorption spectroscopy (XAS) and high resolution X-ray diffraction are combined to study the interplay between electronic and lattice structures in controlling the superconductivity in cuprates with a model charge-compensated CaxLa1-xBa1.75-xLa0.25+xCu3Oy (0<x<0.5, y=7.13) system. In spite of a large change in Tc, the doped holes, determined by the Cu L and O K XAS, hardly show any variation with the x. On the other hand, the CuO2 plaquette size shows a systematic change due to different size of substituted cations. The results provide a direct evidence for the chemical pressure being a key parameter for controlling the superconducting ground state of the cuprates.Comment: Accepted for publication in EP
    corecore