552 research outputs found

    Structure and Evolution of Giant Cells in Global Models of Solar Convection

    Full text link
    The global scales of solar convection are studied through three-dimensional simulations of compressible convection carried out in spherical shells of rotating fluid which extend from the base of the convection zone to within 15 Mm of the photosphere. Such modelling at the highest spatial resolution to date allows study of distinctly turbulent convection, revealing that coherent downflow structures associated with giant cells continue to play a significant role in maintaining the strong differential rotation that is achieved. These giant cells at lower latitudes exhibit prograde propagation relative to the mean zonal flow, or differential rotation, that they establish, and retrograde propagation of more isotropic structures with vortical character at mid and high latitudes. The interstices of the downflow networks often possess strong and compact cyclonic flows. The evolving giant-cell downflow systems can be partly masked by the intense smaller scales of convection driven closer to the surface, yet they are likely to be detectable with the helioseismic probing that is now becoming available. Indeed, the meandering streams and varying cellular subsurface flows revealed by helioseismology must be sampling contributions from the giant cells, yet it is difficult to separate out these signals from those attributed to the faster horizontal flows of supergranulation. To aid in such detection, we use our simulations to describe how the properties of giant cells may be expected to vary with depth, how their patterns evolve in time, and analyze the statistical features of correlations within these complex flow fields.Comment: 22 pages, 16 figures (color figures are low res), uses emulateapj.cls Latex class file, Results shown during a Press release at the AAS meeting in June 2007. Submitted to Ap

    Hartree-Fock ground state of the two-dimensional electron gas with Rashba spin-orbit interaction

    Get PDF
    We search for the uniform Hartree-Fock ground state of the two-dimensional electron gas formed in semiconductor heterostructures including the Rashba spin-orbit interaction. We identify two competing quantum phases: a ferromagnetic one with partial spin polarization in the perpendicular direction and a paramagnetic one with in-plane spin. We present a phase diagram in terms of the relative strengths of the Rashba to the Coulomb interaction and the electron density. We compare our theoretical description with existing experimental results obtained in GaAs-AlGaAs heterostructures.Comment: 5 pages, 2 figure

    On the Origin of Polarization near the Lyman Edge in Quasars

    Get PDF
    Optical/UV radiation from accretion disks in quasars is likely to be partly scattered by a hot plasma enveloping the disk. We investigate whether the scattering may produce the steep rises in polarization observed blueward of the Lyman limit in some quasars. We suggest and assess two models. In the first model, primary disk radiation with a Lyman edge in absorption passes through a static ionized "skin" covering the disk, which has a temperature about 3 keV and a Thomson optical depth about unity. Electron scattering in the skin smears out the edge and produces a steep rise in polarization at lambda < 912 A. In the second model, the scattering occurs in a hot coronal plasma outflowing from the disk with a mildly relativistic velocity. We find that the second model better explains the data. The ability of the models to fit the observed rises in polarization is illustrated with the quasar PG 1630+377.Comment: submitted to ApJ Letter

    Solar Multi-Scale Convection and Rotation Gradients Studied in Shallow Spherical Shells

    Get PDF
    The differential rotation of the sun, as deduced from helioseismology, exhibits a prominent radial shear layer near the top of the convection zone wherein negative radial gradients of angular velocity are evident in the low- and mid-latitude regions spanning the outer 5% of the solar radius. Supergranulation and related scales of turbulent convection are likely to play a significant role in the maintenance of such radial gradients, and may influence dynamics on a global scale in ways that are not yet understood. To investigate such dynamics, we have constructed a series of three-dimensional numerical simulations of turbulent compressible convection within spherical shells, dealing with shallow domains to make such modeling computationally tractable. These simulations are the first models of solar convection in a spherical geometry that can explicitly resolve both the largest dynamical scales of the system (of order the solar radius) as well as smaller-scale convective overturning motions comparable in size to solar supergranulation (20--40 Mm). We find that convection within these simulations spans a large range of horizontal scales, and that the radial angular velocity gradient in these models is typically negative, especially in low- and mid-latitude regions. Analyses of the angular momentum transport indicates that such gradients are maintained by Reynolds stresses associated with the convection, transporting angular momentum inward to balance the outward transport achieved by viscous diffusion and large-scale flows in the meridional plane. We suggest that similar mechanisms associated with smaller-scale convection in the sun may contribute to the maintenance of the observed radial shear layer located immediately below the solar photosphere.Comment: 45 pages, 17 figures, ApJ in press. A preprint of paper with hi-res figures can be found at http://www-lcd.colorado.edu/~derosa/modelling/modelling.htm

    Spontaneous spin polarization in doped semiconductor quantum wells

    Get PDF
    We calculate the critical density of the zero-temperature, first-order ferromagnetic phase transition in n-doped GaAs/AlGaAs quantum wells. We find that the existence of the ferromagnetic transition is dependent upon the choice of well width. We demonstrate rigorously that this dependence is governed by the interplay between different components of the exchange interaction and that there exists an upper limit for the well width beyond which there is no transition. We predict that some narrow quantum wells could exhibit this transition at electron densities lower than the ones that have been considered experimentally thus far. We use a screened Hartree-Fock approximation with a polarization-dependent effective mass, which is adjusted to match the critical density predicted by Monte Carlo calculations for the two-dimensional electron gas.Comment: Submitted to Eur. Phys. Journal

    Malaria transmission in two localities in north-western Argentina

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is one of the most important tropical diseases that affects people globally. The influence of environmental conditions in the patterns of temporal distribution of malaria vectors and the disease has been studied in different countries. In the present study, ecological aspects of the malaria vector <it>Anopheles </it>(<it>Anopheles</it>) <it>pseudopunctipennis </it>and their relationship with climatic variables, as well as the seasonality of malaria cases, were studied in two localities, El Oculto and Aguas Blancas, in north-western Argentina.</p> <p>Methods</p> <p>The fluctuation of <it>An. pseudopunctipennis </it>and the malaria cases distribution was analysed with Random Effect Poisson Regression. This analysis takes into account the effect of each climatic variable on the abundance of both vector and malaria cases, giving as results predicted values named Incidence Rate Radio.</p> <p>Results</p> <p>The number of specimens collected in El Oculto and Aguas Blancas was 4224 (88.07%) and 572 (11.93%), respectively. In El Oculto no marked seasonality was found, different from Aguas Blancas, where high abundance was detected at the end of spring and the beginning of summer. The maximum mean temperature affected the <it>An. pseudopunctipennis </it>fluctuation in El Oculto and Aguas Blancas. When considering the relationship between the number of malaria cases and the climatic variables in El Oculto, maximum mean temperature and accumulated rainfall were significant, in contrast with Aguas Blancas, where mean temperature and humidity showed a closer relationship to the fluctuation in the disease.</p> <p>Conclusion</p> <p>The temporal distribution patterns of <it>An. pseudopunctipennis </it>vary in both localities, but spring appears as the season with better conditions for mosquito development. Maximum mean temperature was the most important variable in both localities. Malaria cases were influenced by the maximum mean temperature in El Oculto, while the mean temperature and humidity were significant in Aguas Blancas. In Aguas Blancas peaks of mosquito abundance and three months later, peaks of malaria cases were observed. The study reported here will help to increase knowledge about not only vectors and malaria seasonality but also their relationships with the climatic variables that influence their appearances and abundances.</p

    Heterologous biosynthesis, modifications and structural characterization of ruminococcin-A, a lanthipeptide from the gut bacterium ruminococcus gnavus E1, in escherichia coli

    Get PDF
    Ruminococcin A (RumA) is a lanthipeptide with high activity against pathogenic clostridia and is naturally produced by the strict anaerobic bacterium Ruminococcus gnavus E1, isolated from human intestine. Cultivating R. gnavus E1 is challenging, limiting high-quality production, further biotechnological development and therapeutic exploitation of RumA. To supply an alternative production system, the gene encoding RumA-modifying enzyme (RumM) and the gene encoding the unmodified precursor peptide (preRumA) were amplified from the chromosome of R. gnavus E1 and coexpressed in Escherichia coli. Our results show that the ruminococcin-A lanthionine synthetase RumM catalysed dehydration of threonine and serine residues and subsequently installed thioether bridges into the core structure of a mutant version of preRumA (preRumA*). These modifications were achieved when the peptide was expressed as a fusion protein together with GFP, demonstrating that a larger attachment to the N-terminus of the leader peptide does not obstruct in vivo processivity of RumM in modifying the core peptide. The leader peptide serves as a docking sequence which the modifying enzyme recognizes and interacts with, enabling its catalytic role. We further investigated RumM catalysis in conjunction with the formation of complexes observed between RumM and the chimeric GFP fusion protein. Results obtained suggested some insights into the catalytic mechanisms of class II lanthipeptide synthetases. Our data further indicated the presence of three thioether bridges, contradicting a previous report whose findings ruled out the possibility of forming a third ring in RumA. Modified preRumA* was activated in vitro by removing the leader peptide using trypsin and biological activity was achieved against Bacillus subtilis ATCC 6633. A production yield of 6 mg of pure modified preRumA* per litre of E. coli culture was attained and considering the size ratio of the leader-to-core segments of preRumA*, this amount would generate a final yield of approximately 1-2 mg of active RumA when the leader peptide is removed. The yield of our system exceeds that attainable in the natural producer by several thousand-fold. The system developed herein supplies useful tools for product optimization and for performing in vivo peptide engineering to generate new analogues with superior anti-infective properties.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität Berli

    Proteomics of a fuzzy organelle: interphase chromatin

    Get PDF
    Chromatin proteins mediate replication, regulate expression and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead we propose a new approach that provides a quantitative assessment of a protein’s probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of CDK regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology

    Measuring the neutron star equation of state using X-ray timing

    Get PDF
    One of the primary science goals of the next generation of hard X-ray timing instruments is to determine the equation of state of the matter at supranuclear densities inside neutron stars, by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modelling. The flux we observe from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, giving rise to a pulsation. Information about mass and radius is encoded into the pulse profile via relativistic effects, and tight constraints on mass and radius can be obtained. The second technique involves characterising the spin distribution of accreting neutron stars. The most rapidly rotating stars provide a very clean constraint, since the mass-shedding limit is a function of mass and radius. However the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasi-periodic oscillations in X-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state. We illustrate how these complementary X-ray timing techniques can be used to constrain the dense matter equation of state, and discuss the results that might be expected from a 10m2^2 instrument. We also discuss how the results from such a facility would compare to other astronomical investigations of neutron star properties. [Modified for arXiv]Comment: To appear in Reviews of Modern Physics as a Colloquium, 23 pages, 9 figure

    Genie: A Generator of Natural Language Semantic Parsers for Virtual Assistant Commands

    Full text link
    To understand diverse natural language commands, virtual assistants today are trained with numerous labor-intensive, manually annotated sentences. This paper presents a methodology and the Genie toolkit that can handle new compound commands with significantly less manual effort. We advocate formalizing the capability of virtual assistants with a Virtual Assistant Programming Language (VAPL) and using a neural semantic parser to translate natural language into VAPL code. Genie needs only a small realistic set of input sentences for validating the neural model. Developers write templates to synthesize data; Genie uses crowdsourced paraphrases and data augmentation, along with the synthesized data, to train a semantic parser. We also propose design principles that make VAPL languages amenable to natural language translation. We apply these principles to revise ThingTalk, the language used by the Almond virtual assistant. We use Genie to build the first semantic parser that can support compound virtual assistants commands with unquoted free-form parameters. Genie achieves a 62% accuracy on realistic user inputs. We demonstrate Genie's generality by showing a 19% and 31% improvement over the previous state of the art on a music skill, aggregate functions, and access control.Comment: To appear in PLDI 201
    corecore