14 research outputs found

    Marine microorganisms as amber inclusions : insights from coastal forests of New Caledonia

    Get PDF
    Marine microorganisms trapped in amber are extremely rare in the fossil record, and the few existing inclusions recovered so far originate from very few pieces of Cretaceous amber from France. Marine macroscopic inclusions are also very rare and were recently described from Cretaceous Burmese amber and Early Miocene Mexican amber. Whereas a coastal setting for the amber source forests is generally proposed, different scenarios have been suggested to explain how these marine inclusions can become trapped in a resin of terrestrial origin. These scenarios include an introduction of marine organisms (i) through high tides, (ii) from storms and resulting in flooding of the littoral/estuarine forest floor, (iii) in resin dropped into the sea in mangrove-type settings, or (iv) by wind and sea spray. We investigated the possibility of a wind-driven introduction of marine microorganisms into tree resins using modern coastal conifer forests with the highly resinous Cook pine (Araucaria columnaris) in New Caledonia as a model for the Cretaceous amber forests from France. By exposing fresh resin surfaces on the seaward side of the trees and the collection of older in situ resins, we confirmed that marine microorganisms can become trapped on sea-exposed resin, along with remnants from terrestrial organisms, and salt crystals. We suggest that, for cases where only a few marine inclusions are discovered in an amber deposit, an origin from aeolian background deposition is feasible. However, a more energetic but possibly still aeolian event is likely needed to explain the high numbers of marine microorganisms embedded in pieces of Cretaceous amber from France.Peer reviewe

    Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil

    No full text
    BACKGROUND: Amber has been reported from the Early Cretaceous Crato Formation, as isolated clasts or within plant tissues. Undescribed cones of uncertain gymnosperm affinity have also been recovered with amber preserved in situ. Here, we provide multiple lines of evidence to determine the botanical affinity of this enigmatic, conspicuous cone type, and to better understand the diversity of amber-source plants present in the Crato Formation and beyond. RESULTS: A new taxon of amber-bearing pollen cone Araripestrobus resinosus gen. nov. et sp. nov. is described here from complete cones and characteristic disarticulated portions. The best-preserved cone portion has both in situ amber infilling the resin canals inside the preserved microsporophyll tissues and pollen of the Eucommiidites-type. This places this genus within the Erdtmanithecales, an incompletely known gymnosperm group from the Mesozoic. FTIR analysis of the in situ amber indicates a potential araucariacean conifer affinity, although affinity with cupressacean conifers cannot be definitely ruled out. Pyr-GC-MS analysis of the Araripestrobus resinosus gen. nov. et sp. nov. in situ fossil resin shows that it is a mature class Ib amber, thought to indicate affinities with araucariacean and cupressacean, but not pinaceous, conifers. This is the first confirmed occurrence of this class of amber in the Crato Formation flora and in South America, except for an archaeological sample from Laguna Guatavita, Colombia. CONCLUSIONS: The combined results of the cones' novel gross morphology and the analyses of the in situ amber and pollen clearly indicate that the new taxon of resinous gymnosperm pollen cones from the Crato Formation is affiliated with Erdtmanithecales. The cone morphology is very distinct from all known pollen cone types of this extinct plant group. We therefore assume that the plant group that produced Eucommiidites-type pollen is much more diverse in habits than previously thought. Moreover, the diversity of potential amber source plants from the Crato Formation is now expanded beyond the Araucariaceae and the Cheirolepidiaceae to include this member of the Erdtmanithecales. Despite dispersed Eucommiidites pollen being noted from the Crato Formation, this is the first time macrofossils of Erdtmanithecales have been recognized from the Early Cretaceous of South America

    Long-term outcomes of systemic therapies for Hurler syndrome : an international multicenter comparison

    No full text
    Purpose: Early treatment is critical for mucopolysaccharidosis type I (MPS I), justifying its incorporation into newborn screening. Enzyme replacement therapy (ERT) treats MPS I, yet presumptions that ERT cannot penetrate the blood–brain barrier (BBB) support recommendations that hematopoietic cell transplantation (HCT) treat the severe, neurodegenerative form (Hurler syndrome). Ethics precludes randomized comparison of ERT with HCT, but insight into this comparison is presented with an international cohort of patients with Hurler syndrome who received long-term ERT from a young age. Methods: Long-term survival and neurologic outcomes were compared among three groups of patients with Hurler syndrome: 18 treated with ERT monotherapy (ERT group), 54 who underwent HCT (HCT group), and 23 who received no therapy (Untreated). All were followed starting before age 5 years. A sensitivity analysis restricted age of treatment below 3 years. Results: Survival was worse when comparing ERT versus HCT, and Untreated versus ERT. The cumulative incidences of hydrocephalus and cervical spinal cord compression were greater in ERT versus HCT. Findings persisted in the sensitivity analysis. Conclusion: As newborn screening widens treatment opportunity for Hurler syndrome, this examination of early treatment quantifies some ERT benefit, supports presumptions about BBB impenetrability, and aligns with current guidelines to treat with HCT

    State of the World's Plants and Fungi, 2023.

    No full text
    corecore