6,055 research outputs found

    Supercritical fuel injection system

    Get PDF
    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning

    Exhaust emissions from a premixing, prevaporizing flame tube using liquid jet A fuel

    Get PDF
    Emissions of nitrogen oxides, carbon monoxide, and unburned hydrocarbons were measured in a burner where liquid Jet A fuel was sprayed into the heated air stream and vaporized upstream of a perforated plate flameholder. The burner was tested at inlet air temperatures at 640, 800, and 833 K, an inlet pressure of 5.6 X 100,000 N/m squared, a reference velocity of 25 m/sec, and equivalence ratios from lean blowout to 0.7. Nitrogen oxide levels of below 1.0 g NO2/kg fuel were obtained at combustion efficiencies greater than 99 percent. The measured emission levels for the liquid fuel agreed well with previously reported premixed gaseous propane data and agreed with well stirred reactor predictions. Autoignition of the premixed fuel air mixture was a problem at inlet temperatures above 650 K with 104 msec premixing time

    Stratospheric cruise emission reduction program

    Get PDF
    A recently implemented NASA effort specifically aimed at reducing cruise oxides of nitrogen from high-altitude aircraft is discussed. The desired emission levels and the combustor technology required to achieve them are discussed. A brief overview of the SCERP operating plan is given. Lean premixed-prevaporized combustion and some of the potential difficulties that are associated with applying this technique to gas turbine combustors are examined. Base technology was developed in several key areas. These fundamental studies are viewed as a requirement for successful implementation of the lean premixed combustion technique

    Preliminary studies of autoignition and flashback in a premixing-prevaporizing flame tube using Jet-A fuel at lean equivalence ratios

    Get PDF
    Lean equivalence ratios from 0.3 to 0.7 were observed. Combustor inlet air pressures were varied from 0.54 to 2.5 MPa, combustor inlet air temperatures from 550 to 700 K, and reference velocities from 8 to 35 meters per second. Autoignition delay times ranged from 15 to 100 milliseconds and varied inversely with pressure. The Arrhenius activation energy was 41,840 joules per mole. Temperature rise data were obtained in a long premixing-prevaporizing tube at a pressure of 0.56 MPa. Preflame temperature rise data were a function of equivalence ratio, inlet air temperature, and tube residence time. Significant temperature rise occurred above temperatures of 760 K, with autoignition occurring at 775 K for equivalence ratios greater than 0.47. The reactions were similar to cool-flame phenomena. Flashback velocities were measured at temperatures of 610 and 700 K, pressure of 0.56 MPa, and equivalence ratios from 0.6 to 1. Flashback velocities varied from 30 to 65 meters per second

    An experimental study of reactive turbulent mixing

    Get PDF
    An experimental study of two coaxial gas streams, which react very rapidly, was performed to investigate the mixing characteristics of turbulent flow fields. The center stream consisted of a CO-N2 mixture and the outer annular stream consisted of air vitiated by H2 combustion. The streams were at equal velocity (50 m/sec) and temperature (1280 K). Turbulence measurements were obtained using hot film anemometry. A sampling probe was used to obtain time averaged gas compositions. Six different turbulence generators were placed in the annular passage to alter the flow field mixing characteristics. The turbulence generators affected the bulk mixing of the streams and the extent of CO conversion to different degrees. The effects can be related to the average eddy size (integral scale) and the bulk mixing. Higher extents of conversion of CO to CO2 were found be increasing the bulk mixing and decreasing the average eddy size

    Extremal spacings between eigenphases of random unitary matrices and their tensor products

    Full text link
    Extremal spacings between eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Explicit probability distributions for the minimal spacing for various ensembles are derived for N = 4. We study ensembles of tensor product of k random unitary matrices of size n which describe independent evolution of a composite quantum system consisting of k subsystems. In the asymptotic case, as the total dimension N = n^k becomes large, the nearest neighbor distribution P(s) becomes Poissonian, but statistics of extreme spacings P(s_min) and P(s_max) reveal certain deviations from the Poissonian behavior

    General Relativistic Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell

    Get PDF
    We show that, at first order in the angular velocity, the general relativistic description of Rossby-Haurwitz waves (the analogues of r-waves on a thin shell) can be obtained from the corresponding Newtonian one after a coordinate transformation. As an application, we show that the results recently obtained by Rezzolla and Yoshida (2001) in the analysis of Newtonian Rossby-Haurwitz waves of a slowly and differentially rotating, fluid shell apply also in General Relativity, at first order in the angular velocity.Comment: 4 pages. Comment to Class. Quantum Grav. 18(2001)L8
    corecore